A number of basic leucine zipper (bZIP) transcription factors are known to function in stress signaling in plants but few have thus far been functionally characterized in rice. In our current study in rice, we have newly isolated and characterized the OsABF1 (Oryza sativa ABA responsive element binding factor 1) gene that encodes a bZIP transcription factor. Its expression in seedling shoots and roots was found to be induced by various abiotic stress treatments such as anoxia, salinity, drought, oxidative stress, cold and abscisic acid (ABA). Subcellular localization analysis in maize protoplasts using GFP fusion vectors indicated that OsABF1 is a nuclear protein. In a yeast experiment, OsABF1 was shown to bind to ABA responsive elements (ABREs) and its N-terminal region was necessary to transactivate the downstream reporter gene. The homozygous T-DNA insertional mutants Osabf1-1 and Osabf1-2 were more sensitive in response to drought and salinity treatments than wild type plants. Furthermore, the upregulated expression of some ABA/stress-regulated genes in response to ABA treatment was suppressed in these Osabf1 mutants. Our current results thus suggest that OsABF1 is involved in abiotic stress responses and ABA signaling in rice.
The study aims at identifying some submergence-tolerant rice genotypes through morphological and molecular characterization and their genetic variability analysis. Ten rice genotypes including two submergence-tolerant checks, two susceptible varieties and six advanced lines were evaluated for submergence tolerance in the laboratory and in the field during January-December 2015. The experiment was conducted in the field following randomized complete block design in a two-factor arrangement using five replications. Ten characters, viz. days to flowering, plant height, tiller number plant, effective tiller plant, and yield plant etc. were studied for four treatments. A significant genotype×environment interaction was observed for all traits studied in this experiment. The yield was reduced for all genotypes at a different level of submergence stress compared to control. Binadhan-11, Binadhan-12, RC 249 and RC 251 showed tolerance, whereas RC 192, RC 193 and RC 225 showed moderate tolerance in submerged condition. The phenotypic coefficient of variance (PCV) was higher than the genotypic coefficient of variance (GCV) in all the studies traits. High heritability (75-97%) was found for all traits. High heritability along with high genetic advance was found for days to flowering (45.55) and plant height (40.05). Molecular characterization of the used genotypes was done with three SSR markers viz. RM 24, and submergence specific SC3 and SUB1. SC3 was found reliable for detection of submergence tolerant genotypes due to the highest gene diversity (0.840) compared to others. The banding pattern of the submergence specific markers SC3 and SUB1 identified in Binadhan-11, Binadhan-12, RC 192, RC 193, RC 225, RC 227, RC 249, and RC 251, which possess the SUB1 gene. Finally, clustering also separates the tolerant genotypes from the susceptible by dividing them into different clusters. The identified genotypes might be useful for the breeding programme for the development of submergence tolerant as well as resistant rice variety in Bangladesh.
Unfavorable environmental and developmental conditions may cause disturbances in protein folding in the endoplasmic reticulum (ER) that are recognized and counteracted by components of the Unfolded Protein Response (UPR) signaling pathways. The early cellular responses include transcriptional changes to increase the folding and processing capacity of the ER. In this study, we systematically screened a collection of inducible transgenic Arabidopsis plants expressing a library of transcription factors for resistance toward UPR-inducing chemicals. We identified 23 candidate genes that may function as novel regulators of the UPR and of which only three genes (bZIP10, TBF1, and NF-YB3) were previously associated with the UPR. The putative role of identified candidate genes in the UPR signaling is supported by favorable expression patterns in both developmental and stress transcriptional analyses. We demonstrated that WRKY75 is a genuine regulator of the ER-stress cellular responses as its expression was found to be directly responding to ER stress-inducing chemicals. In addition, transgenic Arabidopsis plants expressing WRKY75 showed resistance toward salt stress, connecting abiotic and ER-stress responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.