Metaverse is the buzz technology of the moment raising attention both from academia and industry. Many stakeholders are considering an extension of their existing applications into the metaverse environment for more usability. The healthcare industry is gradually making use of the metaverse to improve quality of service and enhance living conditions. In this paper, we focus on the potential of digital anti-aging healthcare in the metaverse environment. We show how we can use metaverse environment to enhance healthcare service quality and increase the life expectancy of patients through more confident processes, such as chronic disease management, fitness, and mental health control, in the metaverse. The convergence of artificial intelligence (AI), blockchain (BC), Internet of Things (IoT), immersive technologies, and digital twin in the metaverse environment presents new scopes for the healthcare industry. By leveraging these technologies, healthcare providers can improve patient outcomes, reduce healthcare costs, and create new healthcare experiences for a better life, thus facilitating the anti-aging process. AI can be used to analyze large-scale medical data and make personalized treatment plans, while blockchain can create a secure and transparent healthcare data ecosystem. As for IoT devices, they collect real-time data from patients, which is necessary for treatment. Together, these technologies can transform the healthcare industry and improve the lives of patients worldwide. The suggestions highlighted in this paper are worthy to undergo implementation and create more benefits that will promote a digital anti-aging process for its users for a longer life experience.
(1) Background: Cameroonians are exposed to poor health services, more so citizens with cardiovascular-related diseases. The global high cost of acquiring healthcare-related technologies has prompted the government and individuals to promote the need for local research and the development of the health system. (2) Objectives: The main goal of this study is to design and develop a low-cost cardiovascular patient monitoring system (RPM) with wireless capabilities that could be used in any region of Cameroon, accessible, and very inexpensive, that are able to capture important factors, well reflecting the patient’s condition and provide alerting mechanisms. (3) Method: Using the lean UX process from the Gothelf and Seiden framework, the implemented IoT-based application measures the patients’ systolic, diastolic, and heart rates using various sensors, that are automated to record directly to the application database for analysis. The validity of the heuristic evaluation was examined in an ethnographic study of paramedics using a prototype of the system in their work environment. (4) Results: We obtained a system that was pre-tested on demo patients and later deployed and tested on seven real human test subjects. The users’ task performances partially verified the heuristic evaluation results. (5) Conclusions: The data acquired by the sensors have a high level of accuracy and effectively help specialists to properly monitor their patients at a low cost. The proposed system maintains a user-friendliness as no expertise is required for its effective utilization.
Dog owners are extremely driven to comprehend the activity and health of their dogs and to keep tabs on their well-being. Dogs’ health and well-being, whether as household pets or service animals, are critical issues that are addressed seriously for moral, psychological, and economical reasons. Evaluations of a dog’s welfare depend on quantitative assessments of the frequency and variability of certain behavioral features, which are sometimes challenging to make in a dog’s normal environment. While it is challenging to obtain dogs’ behavioral patterns, it is nearly impossible to directly identify one distinct behavior when they are roaming around at will. Applications for automatic pet monitoring include real-time surveillance and monitoring systems that accurately identify pets using the most recent methods for the classification of pet activities. The suggested method makes use of a long short-term memory (LSTM)-based method to detect and classify the activities of dogs based on sensor data (i.e., accelerometer and gyroscope). The goal of this study is to use wearable sensor data and examine the activities of dogs using recurrent neural network (RNN) technology. We considered 10 pet behaviors, which include walking, sitting, down, staying, feeding, sideways, leaping, running, shaking, and nose work. As dog activity has a wider diversity, experimental work is performed on the multi-layer LSTM framework to have a positive influence on performance. In this study, data were collected from 10 dogs of various ages, sexes, breeds, and sizes in a safe setting. Data preprocessing and data synchronization were performed after the collection of data. The LSTM model was trained using the preprocessed data and the model’s performance was evaluated by the test dataset. The model showed good accuracy and high performance for the detection of 10 activities of dogs. This model will be helpful for the real-time monitoring of dogs’ activity, thus improving the well-being of dogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.