Functional near-infrared spectroscopy (fNIRS) is a relatively new imaging modality in the functional neuroimaging research arena. The fNIRS modality non-invasively investigates the change of blood oxygenation level in the human brain utilizing the transillumination technique. In the last two decades, the interest in this modality is gradually evolving for its real-time monitoring, relatively low-cost, radiation-less environment, portability, patient-friendliness, etc. Including brain-computer interface and functional neuroimaging research, this technique has some important application of clinical perspectives such as Alzheimer's disease, schizophrenia, dyslexia, Parkinson's disease, childhood disorders, post-neurosurgery dysfunction, attention, functional connectivity, and many more can be diagnosed as well as in some form of assistive modality in clinical approaches. Regarding the issue, this review article presents the current scopes of fNIRS in medical assistance, clinical decision making, and future perspectives. This article also covers a short history of fNIRS, fundamental theories, and significant outcomes reported by a number of scholarly articles. Since this review article is hopefully the first one that comprehensively explores the potential scopes of the fNIRS in a clinical perspective, we hope it will be helpful for the researchers, physicians, practitioners, current students of the functional neuroimaging field, and the related personnel for their further studies and applications.