Analysing the morphometric parameters is the most expedient and parsimonious way of representing the hydrologic and physiographic attributes of river basins. The present study attempts to measure the morphometric parameters for assessing the understanding of morphological, hydrological, and physiographic properties of the south-western part of Ganges delta. Parameters were analysed from Shuttle Radar Topography Mission's (SRTM) maps and total of eight linear, six areal, eight relief, and five drainage texture parameters have taken with hypsometric analysis for the four major rivers and two tributary river basins. The values of linear parameter denote that most of the streams (82%) fall in first order, and other orders have homogeneous underline materials. The aerial parameters represent low peak discharge and the upper region is less vulnerable to flood. The relief parameter values show that the entire basin has low surface runoff and they are less erosional (slope < 3.97°). The drainage density indicates the coarser nature and circularity ratio (0.08) represents the elongated shape. The southern portion of the basin has a greater flood potential and hypsometric index (0.49) shows the entire basin is in mature stage of formation. These results would be helpful for reckoning the watersheds for drainage management and environmental planning for ecological management and sustainable development.
PurposeCrop suitability analysis is vital for identifying a piece of land’s potential for sustainable crop production and aids in the formulation of an effective agricultural management plan. This study aims to conduct crop suitability analysis of prominent Kharif (rice and maize) and Rabi (potato and wheat) crops in Sirajganj district, a flood-prone area of Bangladesh, and recommend a suitable cropping pattern to mitigate the detrimental effects of flooding.Design/methodology/approachVarious factors such as soil drainage, soil depth, soil moisture, soil texture, soil permeability, soil pH, erosion hazard, nutrient status and flooding risk were considered for this study. For all four crops, the weights of each factor were determined using the analytical hierarchy process approach, and the scores of each subfactor were assigned on the basis of favorable circumstances of crop cultivation. Using the weighted overlay analysis in the ArcGIS 10.3 environment, the crop suitability maps were generated and were divided into four suitable classes. Geographic information system integration of crop suitability for all the crops determined the suitable cropping pattern of the study area in Kharif and Rabi seasons.FindingsA vast portion of the study area covering 64.80% of the total land is suitable for cultivating either rice or maize in Kharif season followed by either potato or wheat in Rabi season. Other suitable cropping pattern for Kharif and Rabi seasons found in the study area are rice-wheat, rice-wheat/potato, rice/maize-wheat and rice/maize-potato, which covers a little portion of the study area.Originality/valueThis research validates the suitable location of crop cultivation on the basis of flooding occurrences in the locality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.