Low cost, controlled crystallinity, chemical, and mechanical stability enable application of polymers in energy, water, electronics, and biomedical industries. Recent studies have shown that tailoring surface properties of polymers impacts their durability and functionality in these applications. However, the functionality and performance of polymer‐based devices and systems are greatly affected by the modification method and the process parameters, highlighting the need for understanding these methods and their mechanisms of operation in detail. The selection of the modification method invariably decides the properties enhanced in the polymer. In this review, various polymer surface modification treatments are discussed. These methods are categorized into physical, chemical, thermal, and optical ways, while illustrating their advantages and disadvantages. This review also explores the surface modification of polymers by patterning which encompasses one or more surface treatment methods. An application‐oriented study is presented discussing the relative importance of a method pertaining to a specific field of end‐application.
Deep eutectic solvents (DESs) are an emerging class of non-aqueous solvents that are potentially scalable, easy to prepare and functionalize for many applications ranging from biomass processing to energy storage technologies. Predictive understanding of the fundamental correlations between local structure and macroscopic properties is needed to exploit the large design space and tunability of DESs for specific applications. Here, we employ a range of computational and experimental techniques that span length-scales from molecular to macroscopic and timescales from picoseconds to seconds to study the evolution of structure and dynamics in model DESs, namely Glyceline and Ethaline, starting from the parent compounds. We show that systematic addition of choline chloride leads to microscopic heterogeneities that alter the primary structural relaxation in glycerol and ethylene glycol and result in new dynamic modes that are strongly correlated to the macroscopic properties of the DES formed.
Liquid-like Nanoscale Organic Hybrid Materials or NOHMs consisting of polymer grafted nanoparticles have shown great promise in applications, such as electrochemistry and gas separation, due to their enhanced conductivity, tunability, and negligible vapor pressure. Recently, NOHMs are considered to be used as novel electrolytes in Redox Flow Batteries (RFBs). However, to employ NOHMs in redox flow batteries as electrolytes, it is important to understand the conformation and dispersion of NOHMs in the electrochemical milieu. Here, we report the use of small-angle neutron scattering to probe the structure and dispersion of Jeffamine M2070 polymer grafted to a SiO 2 nanoparticle in an aqueous solution with and without the presence of a supporting electrolyte. Our results indicate that, in the aqueous environment, there exists a large amount of free polymer in the solution that is not grafted to the functionalized nanoparticles. These protonated free polymers, dispersed in the aqueous solvent, may also strongly interact with the grafted polymer layer and greatly affect the neat structure of NOHMs. Thus, there also exist polymers identified as "interacting" polymers to distinguish them from tethered or truly free polymers in the fluid system. The presence of supporting electrolyte shows a greater effect on the structure of NOHMs-based fluid as it not only alters the structure of the free polymer but also hinders the interaction of the polymer with the functionalized nanoparticles. Moreover, the change in the interaction of the Jeffamine M2070 with the functionalized nanoparticles due to the addition of supporting electrolyte has revealed a drastic change in the viscosities of NOHM solutions. Overall, the dispersion of the free polymer, the interaction of the interacting polymer with grafted polymer, and the change in conformation of free polymer and grafted layers with the addition of supporting electrolyte provide valuable insight into the overall scenario of the electrochemical environment of NOHMs. These results can be applied to fine-tune the structure of liquid-like NOHMs and will aid in a better understanding of their performance as potential electrolytes in RFBs.
A novel hexahedron fiber has been proposed for biomedical imaging applications and efficient guiding of terahertz radiation. A finite element method (FEM) has been applied to investigate the guiding properties rigorously. All numerically computational investigated results for optimum parameters have revealed the high numerical aperture (NA) of 0.52, high core power fraction of 64%, near zero flattened dispersion of 0.5 ± 0.6 ps/THz/cm over the 0.8–1.4 THz band and low losses with 80% of the bulk absorption material loss. In addition, the V–parameter is also inspected for checking the proposed fiber modality. The proposed single-mode hexahedron photonic crystal fiber (PCF) can be highly applicable for convenient broadband transmission and numerous applications in THz technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.