RNA interference (RNAi) plays key roles in post-transcriptional and chromatin modification levels as well as regulates various eukaryotic gene expressions which are involved in stress responses, development and maintenance of genome integrity during developmental stages. The whole mechanism of RNAi pathway is directly involved with the gene-silencing process by the interaction of Dicer-Like (DCL), Argonaute (AGO) and RNA-dependent RNA polymerase (RDR) gene families and their regulatory elements. However, these RNAi gene families and their sub-cellular locations, functional pathways and regulatory components were not extensively investigated in the case of economically and nutritionally important fruit plant sweet orange (Citrus sinensis L.). Therefore, in silico characterization, gene diversity and regulatory factor analysis of RNA silencing genes in C. sinensis were conducted by using the integrated bioinformatics approaches. Genome-wide comparison analysis based on phylogenetic tree approach detected 4 CsDCL, 8 CsAGO and 4 CsRDR as RNAi candidate genes in C. sinensis corresponding to the RNAi genes of model plant Arabidopsis thaliana. The domain and motif composition and gene structure analyses for all three gene families exhibited almost homogeneity within the same group members. The Gene Ontology enrichment analysis clearly indicated that the predicted genes have direct involvement into the gene-silencing and other important pathways. The key regulatory transcription factors (TFs) MYB, Dof, ERF, NAC, MIKC_MADS, WRKY and bZIP were identified by their interaction network analysis with the predicted genes. The cis-acting regulatory elements associated with the predicted genes were detected as responsive to light, stress and hormone functions. Furthermore, the expressed sequence tag (EST) analysis showed that these RNAi candidate genes were highly expressed in fruit and leaves indicating their organ specific functions. Our genome-wide comparison and integrated bioinformatics analyses provided some necessary information about sweet orange RNA silencing components that would pave a ground for further investigation of functional mechanism of the predicted genes and their regulatory factors.
Statistical data-mining (DM) and machine learning (ML) are promising tools to assist in the analysis of complex dataset. In recent decades, in the precision of agricultural development, plant phenomics study is crucial for high-throughput phenotyping of local crop cultivars. Therefore, integrated or a new analytical approach is needed to deal with these phenomics data. We proposed a statistical framework for the analysis of phenomics data by integrating DM and ML methods. The most popular supervised ML methods; Linear Discriminant Analysis (LDA), Random Forest (RF), Support Vector Machine with linear (SVM-l) and radial basis (SVM-r) kernel are used for classification/prediction plant status (stress/non-stress) to validate our proposed approach. Several simulated and real plant phenotype datasets were analyzed. The results described the significant contribution of the features (selected by our proposed approach) throughout the analysis. In this study, we showed that the proposed approach removed phenotype data analysis complexity, reduced computational time of ML algorithms, and increased prediction accuracy.
Abstract:Biomass is an important phenotypic trait in functional ecology and growth analysis. The typical methods for measuring biomass are destructive, and they require numerous individuals to be cultivated for repeated measurements. With the advent of image-based high-throughput plant phenotyping facilities, non-destructive biomass measuring methods have attempted to overcome this problem. Thus, the estimation of plant biomass of individual plants from their digital images is becoming more important. In this paper, we propose an approach to biomass estimation based on image derived phenotypic traits. Several image-based biomass studies state that the estimation of plant biomass is only a linear function of the projected plant area in images. However, we modeled the plant volume as a function of plant area, plant compactness, and plant age to generalize the linear biomass model. The obtained results confirm the proposed model and can explain most of the observed variance during image-derived biomass estimation. Moreover, a small difference was observed between actual and estimated digital biomass, which indicates that our proposed approach can be used to estimate digital biomass accurately.
Outbreaks of COVID-19 caused by the novel coronavirus SARS-CoV-2 is still a threat to global human health. In order to understand the biology of SARS-CoV-2 and developing drug against COVID-19, a vast amount of genomic, proteomic, interatomic, and clinical data is being generated, and the bioinformatics researchers produced databases, webservers and tools to gather those publicly available data and provide an opportunity of analyzing such data. However, these bioinformatics resources are scattered and researchers need to find them from different resources discretely. To facilitate researchers in finding the resources in one frame, we have developed an integrated web portal called OverCOVID (http://bis.zju.edu.cn/overcovid/). The publicly available webservers, databases and tools associated with SARS-CoV-2 have been incorporated in the resource page. In addition, a network view of the resources is provided to display the scope of the research. Other information like SARS-CoV-2 strains is visualized and various layers of interaction resources is listed in distinct pages of the web portal. As an integrative web portal, the OverCOVID will help the scientist to search the resources and accelerate the clinical research of SARS-CoV-2.
Most noncoding RNAs are considered by their expression at low levels and as having a limited phylogenetic distribution in the cytoplasm, indicating that they may be only involved in specific biological processes. However, recent studies showed the protein-coding potential of ncRNAs, indicating that they might be a source of some special proteins. Although there are increasing noncoding RNAs identified to be able to code proteins, it is challenging to distinguish coding RNAs from previously annotated ncRNAs, and to detect the proteins from their translation. In this article, we designed a pipeline to identify these noncoding RNAs in Arabidopsis thaliana from three NCBI GEO data sets with coding potential and predict their translation products. 31 311 noncoding RNAs were predicted to be translated into peptides, and they showed lower conservation rate than common proteins. In addition, we built an interaction network between these peptides and annotated Arabidopsis proteins using BIPS, which included 69 peptides from noncoding RNAs. Peptides in the interaction network showed different characteristics from other noncoding RNA-derived peptides, and they participated in several crucial biological processes, such as photorespiration and stress-responses. All the information of putative ncPEPs and their interaction with proteins predicted above are finally integrated in a database, PncPEPDB ( http://bis.zju.edu.cn/PncPEPDB ). These results showed that peptides derived from noncoding RNAs may play important roles in noncoding RNA regulation, which provided another hypothesis that noncoding RNA may regulate the metabolism via their translation products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.