Recently, the healthcare industry has caught the attention of researchers due to a need to develop a smart and interactive system for effective and efficient treatment facilities. The healthcare system consists of massive biological data (unstructured or semi-structured) which needs to be analyzed and processed for early disease detection. In this paper, we have designed a piece of healthcare technology which can deal with a patient’s past and present medical data including symptoms of a disease, emotional data, and genetic data. We have designed a probabilistic data acquisition scheme to analyze the medical data. This model contains a data warehouse with a two-way interaction between high-performance computing and cloud synchronization. Finally, we present a prediction scheme that is performed in the cloud server to predict disease in a patient. To complete this task, we used Random Forest, Support Vector Machine (SVM), C5.0, Naive Bayes, and Artificial Neural Networks for prediction analysis, and made a comparison between these algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.