With the extensive growth of user interactions through prominent advances of the Web, sentiment analysis has obtained more focus from an academic and a commercial point of view. Recently, sentiment analysis in the Bangla language is progressively being considered as an important task, for which previous approaches have attempted to detect the overall polarity of a Bangla document. To the best of our knowledge, there is no research on the aspect-based sentiment analysis (ABSA) of Bangla text. This can be described as being due to the lack of available datasets for ABSA. In this paper, we provide two publicly available datasets to perform the ABSA task in Bangla. One of the datasets consists of human-annotated user comments on cricket, and the other dataset consists of customer reviews of restaurants. We also describe a baseline approach for the subtask of aspect category extraction to evaluate our datasets.
Khulna City is extremely vulnerable to the effects of climate change. The city experiences frequent waterlogging during extreme rainfall events. This research prepared a drainage simulation model considering climate change issues for investigating the extent of waterlogging in the city. Watershed and precipitation were analyzed to examine the existing scenario of the study area. Finally, a Mike Urban-based hydrological simulation model was formulated to investigate the severity of waterlogging. As found by precipitation analysis, 180 mm, 346 mm, and 396 mm rainfall might occur for the 5-year, 50-year, and 100-year return period, respectively. This research identified that volume of overland flow might be affected by climate change-induced rainfall. According to the simulation, 62.52% of the study area was waterlogged with different inundation depths. It was found that traffic movements were severely disrupted and structures were hampered due to waterlogging. 45% paved, 77% brick soling, and 65% unpaved roads were inundated by different inundation levels. On the other hand, 61.1% of structures of the study area were affected by waterlogging. The findings of the research might help the concerned authority in decision-making, especially for the drainage and water-related issues, to solve the waterlogging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.