The rumen microbial communities of ruminants are thought to be the most promising biochemical source of inordinately diversified and multi-functional cellulolytic enzymes with unique functional adaptations to improve biotechnological processes. The exploitation of rumen microbial genetic variety has been limited due to a lack of effective screening culture techniques and a lack of understanding of the rumen microbial genetic diversity. This study is conducted to isolate and characterize rumen bacteria from goat rumen that have capability to produce xylanase enzyme. Serial dilutions technique is applied to isolate bacteria from goat rumen and repeated tubing of the selectively enriched microbial cultures by using the specific media for rumen bacteria. Following that, all of the isolates were underwent Methyl Red (MR) test & Voges-Proskauer (VP) test to identify organisms metabolic pathway, Triple Sugar Iron Agar (TSI) Test to determine bacterial ability to utilize sugar, Motility Indole and Urease activity test (MIU) to determine motility, Urease utilization and can produce Indole or not, Citrate utilization test to utilize citrate as carbon and energy source, Oxidase test, Catalase test to check the presence of catalytic enzyme where all isolates found promising which indicates that all five isolates are superior and capable to produce xylanase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.