Respiratory rate is an extremely important but poorly monitored vital sign for medical conditions. Current modalities for respiratory monitoring are suboptimal. This paper presents a proof of concept of a new algorithm using a contactless ultra-wideband (UWB) impulse radar-based sensor to detect respiratory rate in both a laboratory setting and in a two-subject case study in the Emergency Department. This novel approach has shown correlation with manual respiratory rate in the laboratory setting and shows promise in Emergency Department subjects. In order to improve respiratory rate monitoring, the UWB technology is also able to localize subject movement throughout the room. This technology has potential for utilization both in and out of the hospital environments to improve monitoring and to prevent morbidity and mortality from a variety of medical conditions associated with changes in respiratory rate.
Low Density Parity Check Codes (LDPC) give groundbreaking performance which is known to approach Shannon’s limits for sufficiently large block length. Historically and recently, LDPC have been known to give superior performance than concatenated coding. In the following paper, a proposal to modify the standard Min-Sum (MS) algorithm for decoding LDPC codes is presented. This is done by introduction of a factor, intensity reflection coefficient (IRC),
Knowing how and when people interact with their surroundings is crucial for constructing dynamic and intelligent environments. Despite the importance of this problem, an attainable and simple solution is still lacking. Current solutions often require powered sensors on monitored objects or users themselves. Many such systems use batteries [1-3], which are costly and time consuming to replace. Some powered systems connect to the grid, which may save swapping batteries, but at the price of restricted placement options. Other solutions use passive tags on monitored objects or require no tags at all, but many of these systems have prohibitive characteristics. For instance, camera-based systems [4,5] generally will not work if their view is occluded. Many other systems that rely on passive tags or do not use tags require direct line-of-sight or close proximity to work. As such, our goal was to design and develop small, cheap, easy-to-install tags that do not require any batteries, silicon chips or discrete electronic components, which can be monitored without direct line-of-sight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.