A multivariable technique has been incorporated for guesstimating solutions of Nonlinear Partial Differential Equations (NPDE) using bases set of B-Polynomials (B-polys). To approximate the anticipated solution of the NPD equation, a linear product of variable coefficients ai(t) and B-polys Bi(x) has been employed. Additionally, the variable quantities in the anticipated solution are determined using the Galerkin method for minimizing errors. Before the minimization process is to take place, the NPDE is converted into an operational matrix equation which, when inverted, yields values of the undefined coefficients in the expected solution. The nonlinear terms of the NPDE are combined in the operational matrix equation using the initial guess and iterated until converged values of coefficients are obtained. A valid converged solution of NPDE is established when an appropriate degree of B-poly basis is employed, and the initial conditions are imposed on the operational matrix before the inverse is invoked. However, the accuracy of the solution depends on the number of B-polys of a certain degree expressed in multidimensional variables. Four examples of NPDE have been worked out to show the efficacy and accuracy of the two-dimensional B-poly technique. The estimated solutions of the examples are compared with the known exact solutions and an excellent agreement is found between them. In calculating the solutions of the NPD equations, the currently employed technique provides a higher-order precision compared to the finite difference method. The present technique could be readily extended to solving complex partial differential equations in multivariable problems.
A multidimensional, modified, fractional-order B-polys technique was implemented for finding solutions of linear fractional-order partial differential equations. To calculate the results of the linear Fractional Partial Differential Equations (FPDE), the sum of the product of fractional B-polys and the coefficients was employed. Moreover, minimization of error in the coefficients was found by employing the Galerkin method. Before the Galerkin method was applied, the linear FPDE was transformed into an operational matrix equation that was inverted to provide the values of the unknown coefficients in the approximate solution. A valid multidimensional solution was determined when an appropriate number of basis sets and fractional-order of B-polys were chosen. In addition, initial conditions were applied to the operational matrix to seek proper solutions in multidimensions. The technique was applied to four examples of linear FPDEs and the agreements between exact and approximate solutions were found to be excellent. The current technique can be expanded to find multidimensional fractional partial differential equations in other areas, such as physics and engineering fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.