This paper presents and discusses a comparative study of three major clustering categories namely Hierarchical-based, Iterative mode-based and Partition-based in analyzing and prioritizing Mobile Augmented reality (MAR) Learning (MAR-learning) usability data. This paper first discusses the related works in usability and clustering before moving on to the identification of gaps that can be addressed through experimentation. This paper will then propose a research methodology to measure four common clustering techniques on MAR-learning usability data. The paper will then discourse comparative results showing how Mini-batch K-means to be an ideal technique within the experimental setup. The paper will then present important research highlights, discussion, conclusion and future works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.