A good number of genome-wide association studies (GWAS), including meta-analyses, reported that single nucleotide polymorphisms (SNPs) of the IL-6 gene are significantly associated with various types of cancer risks, though some other studies reported insignificant association with cancers, in the literature. These contradictory results may be due to variations in sample sizes and/or deficiency of statistical modeling. Therefore, an attempt is made to provide a more comprehensive understanding of the association between the IL-6 gene SNPs (rs1800795, rs1800796, rs1800797) and different cancer risks, giving the weight on a large sample size, including different cancer types and appropriate statistical modeling with the meta-dataset. In order to attain a more reliable consensus decision about the association between the IL-6 gene polymorphisms and different cancer risks, in this study, we performed a multi-case statistical meta-analysis based on the collected information of 118 GWAS studies comprising of 50053 cases and 65204 control samples. Results from this Meta-analysis indicated a significant association (p-value < 0.05) of the IL-6 gene rs1800796 polymorphism with an overall increased cancer risk. The subgroup analysis data based on cancer types exhibited significant association (p-value < 0.05) of the rs1800795 polymorphism with an overall increased risk of cervical, liver and prostate cancers; the rs1800796 polymorphism with lung, prostate and stomach cancers; and the rs1800797 polymorphism with cervical cancer. The subgroup analysis of ethnicity data showed a significant association (p-value < 0.05) of an overall cancer risk with the rs1800795 polymorphism for the African and Asian populations, the rs1800796 polymorphism for the Asian only and the rs1800797 polymorphism in the African population. Comparative discussion showed that our multi-case meta-analyses received more support than any previously reported individual meta-analysis about the association between the IL-6 gene polymorphisms and cancer risks. Results from this study, more confidently showed that the IL-6 gene SNPs (rs1800795, rs1800796 and rs1800797) in humans are associated with increased cancer risks. Therefore, these three polymorphisms of the IL-6 gene have the potential to be evaluated as a population based rapid, low-cost PCR prognostic biomarkers for different types of cancers diagnosis and research.
Bioinformatics analysis has been playing a vital role in identifying potential genomic biomarkers more accurately from an enormous number of candidates by reducing time and cost compared to the wet-lab-based experimental procedures for disease diagnosis, prognosis, and therapies. Cervical cancer (CC) is one of the most malignant diseases seen in women worldwide. This study aimed at identifying potential key genes (KGs), highlighting their functions, signaling pathways, and candidate drugs for CC diagnosis and targeting therapies. Four publicly available microarray datasets of CC were analyzed for identifying differentially expressed genes (DEGs) by the LIMMA approach through GEO2R online tool. We identified 116 common DEGs (cDEGs) that were utilized to identify seven KGs (AURKA, BRCA1, CCNB1, CDK1, MCM2, NCAPG2, and TOP2A) by the protein–protein interaction (PPI) network analysis. The GO functional and KEGG pathway enrichment analyses of KGs revealed some important functions and signaling pathways that were significantly associated with CC infections. The interaction network analysis identified four TFs proteins and two miRNAs as the key transcriptional and post-transcriptional regulators of KGs. Considering seven KGs-based proteins, four key TFs proteins, and already published top-ranked seven KGs-based proteins (where five KGs were common with our proposed seven KGs) as drug target receptors, we performed their docking analysis with the 80 meta-drug agents that were already published by different reputed journals as CC drugs. We found Paclitaxel, Vinorelbine, Vincristine, Docetaxel, Everolimus, Temsirolimus, and Cabazitaxel as the top-ranked seven candidate drugs. Finally, we investigated the binding stability of the top-ranked three drugs (Paclitaxel, Vincristine, Vinorelbine) by using 100 ns MD-based MM-PBSA simulations with the three top-ranked proposed receptors (AURKA, CDK1, TOP2A) and observed their stable performance. Therefore, the proposed drugs might play a vital role in the treatment against CC.
aims: The goal of this study was to identify potential drug target proteins and agents for the treatment of HCC. background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death globally. The mechanisms underlying the development of HCC have remained mostly unknown till now. objective: i) The first goal was to identify key genomic biomarkers related to HCC, highlighting their functions, pathways, and regulatory factors; (ii) the second goal was to investigate candidate drugs for HCC treatments; and (iii) the final goal was to propose potential candidate drugs against HCC based on identified biomarkers. method: The publicly available three mRNA expression profiles from the GEO database were utilized to analyze the differentially expressed genes (DEGs) in HCC. The identification of Hub-DEGs, regulator’s analysis, and survival of HCC patients were conducted by integrated bioinformatics methods. Finally, the top-ranked drug targets and agents were identified by molecular docking study for HCC. result: We identified 160 common differentially expressed genes (cDEGs) and, through protein-protein interaction, ten genes (CDKN3, TK1, NCAPG, CDCA5, RACGAP1, AURKA, PRC1, UBE2T, MELK, and ASPM) were selected as Hub-DEGs. The GO functional and KEGG pathway enrichment analyses of Hub-DEGs revealed several important functions and signaling pathways that are significantly related to HCC. The interaction network analysis identified three TF proteins and eight miRNAs as the key transcriptional and post-transcriptional regulators of Hub-DEGs. Considering Hub-DEGs, 3 key TFs proteins and already published 7 top-ranked meta-genes as drug target receptors, and performed their docking analysis with a list of 172 meta-agent drugs for HCC. We observed that lead five drugs were common with our proposed and published receptors based on their binding affinities. conclusion: Dactinomycin, Vincristine, Sirolimus, Valrubicin, and Navitoclax showed strong binding affinities with proposed receptors, suggesting that the selected drugs may play a vital role in the treatment of HCC. other: The present study emphasizes further wet lab experimental validation for both the proposed target proteins and candidate drugs.
HIF1A gene polymorphisms have been confirmed the association with cancer risk through the statistical meta-analysis based on single genetic association (SGA) studies. A good number SGA studies also investigated the association of HIF1A gene with several other diseases, but no researcher yet performed statistical meta-analysis to confirm this association more accurately. Therefore, in this paper, we performed a statistical meta-analysis to draw a consensus decision about the association of HIF1A gene polymorphisms with several diseases except cancers giving the weight on large sample size. This meta-analysis was performed based on 41 SGA study’s findings, where the polymorphisms rs11549465 (1772 C/T) and rs11549467 (1790 G/A) of HIF1A gene were analyzed based on 11544 and 7426 cases and 11494 and 7063 control samples, respectively. Our results showed that the 1772 C/T polymorphism is not significantly associated with overall disease risks. The 1790 G/A polymorphism was significantly associated with overall diseases under recessive model (AA vs. AG + GG), which indicates that the A allele is responsible for overall diseases though it is recessive. The subgroup analysis based on ethnicity showed the significant association of 1772 C/T polymorphism with overall disease for Caucasian population under the all genetic models, which indicates that the C allele controls overall diseases. The ethnicity subgroup showed the significant association of 1790 G/A polymorphism with overall disease for Asian population under the recessive model (AA vs. AG + GG), which indicates that the A allele is responsible for overall diseases. The subgroup analysis based on disease types showed that 1772 C/T is significantly associated with chronic obstructive pulmonary disease (COPD) under two genetic models (C vs. T and CC vs. CT + TT), skin disease under two genetic models (CC vs. TT and CC + CT vs. TT), and diabetic complications under three genetic models (C vs. T, CT vs. TT and CC + CT vs. TT), where C allele is high risk factor for skin disease and diabetic complications (since, ORs > 1), but low risk factor for COPD (since, ORs < 1). Also the 1790 G/A variant significantly associated with the subgroup of cardiovascular disease (CVD) under homozygote model, diabetic complications under allelic and homozygote models, and other disease under four genetic models, where the A is high risk factor for diabetic complications and low risk factor for CVD. Thus, this study provided more evidence that the HIF1A gene is significantly associated with COPD, CVD, skin disease and diabetic complications. These might be the severe comorbidities and risk factors for multiple cancers due to the effect of HIF1A gene and need further investigations accumulating large number of studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.