Mutual information (MI) based feature selection methods are getting popular as its ability to capture the nonlinear and linear relationship among random variables and thus it performs better in different fields of machine learning. Traditional MI based feature selection algorithms use different techniques to find out the joint performance of features and select the relevant features among them. However, to do this, in many cases, they might incorporate redundant features. To solve these issues, we propose a feature selection method, namely Clustering based Feature Selection (CbFS), to cluster the features in such a way so that redundant and complementary features are grouped in the same cluster. Then, a subset of representative features is selected from each cluster. Experimental results of CbFS and four state-of-the-art methods are reported to measure the excellency of CbFS over twenty benchmark UCI datasets and three renowned network intrusion datasets. It shows that CbFS performs better than the comparative methods in terms of accuracy and performs better in identifying attack or normal instances in security datasets. DUJASE Vol. 7 (2) 47-55, 2022 (July)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.