Significant improvement in the dielectric performance of the bio-derived gelatin-based polymer nanocomposites has been observed due to the incorporation of MWCNT nanofiller.
Bio-degradable and eco-friendly plasticized starch/reduced graphene oxide (PS/rGO) nanocomposites were made by a simple aqueous casting method. The effect of the rGO nanofiller on the structural, surface-morphological, mechanical, thermal, and electrochemical properties of the nanocomposite was studied. rGO enhances the thermal stability and significantly improves the mechanical strength of the polymer nanocomposite. The PS/rGO nanocomposite exhibits improved electrochemical performance and a specific capacitance as high as 42.25 F/g at a current density of 0.1 mA/cm2, which is about 20 times higher than that of PS (2.51 F/g). These improved thermal, mechanical, and electrochemical properties of the PS/rGO may be attributed to the good interfacial interaction and preferential orientation of rGO sheets in the nanocomposites. The PS/rGO nanocomposites with improved thermal and mechanical properties together with enhanced electrochemical performance produced from an easy and low-cost process will provide a sustainable way for the fabrication of eco-friendly energy storage devices.
Wide-scale production of non-biodegradable e-waste from electrical appliances are causing great harm to the environment. The use of bio-polymer based nanomaterials may offer a promising approach for the fabrication of eco-friendly sustainable devices. In this work, gelatin/single walled carbon nanotube (Gel/SWCNT) nanocomposites were prepared by a simple and economic aqueous casting method. The effect of SWCNT on the structural, surface-morphological, electrical, and electrochemical properties of the nanocomposite was studied. Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscope (FESEM) showed an improved degree of interaction between the SWCNTs and Gel matrix. The surface wettability of the nanocomposites was found to be changed from hydrophilic to hydrophobic in nature due to the incorporation of SWCNTs into the Gel matrix. The incorporation of SWCNTs was also found to reduce the DC resistivity of the nanocomposite by 4 orders of magnitude. SWCNTs also increase the specific capacitance of the nanocomposite from 124 mF/g to 467 mF/g at a current density of 0.3 mA/g. The electrochemical impedance spectroscopy analysis revealed an increase of the pseudo-capacitance increased from 9.4 μF to 31 μF due to the incorporation of SWCNT. The Gel/SWCNT nanocomposite showed cyclic stability with capacitive retention of about 98% of its initial capacitance after completing 2000 charging/discharging cycles at a current density of 100 mA/g. The nanocomposite completely dissolves in water within 12 h, demonstrates it as a promising candidate for transient energy storage applications. The Gel/SWCNT nanocomposite may offer a new route for the synthesis of ecofriendly, biodegradable, and transient devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.