White Spot Syndrome Virus (WSSV), the etiological agent of White Spot Disease (WSD) is a major impediment for shrimp aquaculture in the worldwide. A critical threshold level of WSSV load in infected shrimp is an important trait for disease manifestation and WSSV transmission in cultured shrimp and subsequently make outbreaks. The present study investigated 120 naturally infected cultured shrimp samples by SYBR Green based qPCR assay for WSD diagnosis and quantification of WSSV load. Among them, 94 samples resulted a variable count of WSSV load ranging from 2.1 × 108 to 2.64 × 1014 copies/g of shrimp tissue. The severity of WSSV infection was assessed based on the established critical threshold load of WSSV in shrimp tissue. Compared to the established critical threshold value of WSSV load in shrimp tissue, our findings showed the horrifying scenario of the severity of WSSV infection in cultured shrimps of Bangladesh that was found to be above the critical limit to initiate an outbreak in the Bangladeshi shrimp aquaculture industry. The latest phylogenetic pattern was altered from the former monophyletic history among WSSVs of Bangladesh due to a variation at 500th nucleotide of VP28 coding gene. Viruses characterized from recent outbreaks in 2015 and 2017 displayed amino acid substitution at position 167 (G→E) on the surface of VP28 protein which has demonstrated the probable replacement of indigenous virus pool. Therefore, it is imperative to take initiative for the management and prevention of WSSV outbreak to sustain shrimp aquaculture in South-West region of Bangladesh.Electronic supplementary materialThe online version of this article (10.1186/s13568-018-0553-z) contains supplementary material, which is available to authorized users.
White Spot Syndrome Virus (WSSV) has emerged as one of the most prevalent and lethal viruses globally and infects both shrimps and crabs in the aquatic environment. This study aimed to investigate the occurrence of WSSV in different ghers of Bangladesh and the virulence of the circulating phylotypes. We collected 360 shrimp (Penaeus monodon) and 120 crab (Scylla sp.) samples from the south-east (Cox’s Bazar) and south-west (Satkhira) coastal regions of Bangladesh. The VP28 gene-specific PCR assays and sequencing revealed statistically significant (p < 0.05, Kruskal–Wallis test) differences in the prevalence of WSSV in shrimps and crabs between the study areas (Cox’s Bazar and Satkhira) and over the study periods (2017–2019). The mean Log load of WSSV varied from 8.40 (Cox’s Bazar) to 10.48 (Satkhira) per gram of tissue. The mean values for salinity, dissolved oxygen, temperature and pH were 14.71 ± 0.76 ppt, 3.7 ± 0.1 ppm, 34.11 ± 0.38 °C and 8.23 ± 0.38, respectively, in the WSSV-positive ghers. The VP28 gene-based phylogenetic analysis showed an amino-acid substitution (E→G) at the 167th position in the isolates from Cox’s Bazar (referred to as phylotype BD2) compared to the globally circulating one (BD1). Shrimp PL artificially challenged with BD1 and BD2 phylotypes with filtrates of tissue containing 0.423 × 109 copies of WSSV per mL resulted in a median LT50 value of 73 h and 75 h, respectively. The in vivo trial showed higher mean Log WSSV copies (6.47 ± 2.07 per mg tissue) in BD1-challenged shrimp PL compared to BD2 (4.75 ± 0.35 per mg tissue). Crabs infected with BD1 and BD2 showed 100% mortality within 48 h and 62 h of challenge, respectively, with mean Log WSSV copies of 12.06 ± 0.48 and 9.95 ± 0.37 per gram tissue, respectively. Moreover, shrimp antimicrobial peptides (AMPs), penaeidin and lysozyme expression were lower in the BD1-challenged group compared to BD2 challenged shrimps. These results collectively demonstrated that relative virulence properties of WSSV based on mortality rate, viral load and expression of host immune genes in artificially infected shrimp PL could be affected by single aa substitution in VP28.
White Spot Syndrome Virus (WSSV) has emerged as one of the most prevalent and lethal viruses globally, and infects both shrimps and crabs in the aquatic environment. This study aimed to investigate the occurrence of WSSV in different ghers of Bangladesh and the virulence of the circulating phylotypes. We collected 360 shrimp (Penaeus monodon) and 120 crab (Scylla sp.) samples from the South-East (Cox’s Bazar) and South-West (Satkhira) coastal regions of Bangladesh. The VP28 gene-specific PCR assays and sequencing revealed statistically significant (p < 0.05, Kruskal Wallis test) differences in the prevalence of WSSV in shrimps and crabs between the study areas (Cox’s Bazar and Satkhira), and over the study periods (2017-2019). The mean Log load of WSSV varied from 8.40 (Cox’s Bazar) to 10.48 (Satkhira) per gram of tissue. The mean values for salinity, dissolved oxygen, temperature and pH were 14.71±0.76 ppt, 3.7±0.1 ppm, 34.11±0.38˚C and 8.23±0.38, respectively in the WSSV-positive ghers. The VP28 gene-based phylogenetic analysis showed an amino-acid substitution (E→G) at 167th position in the isolates from Cox’s Bazar (referred to as phylotype BD2) compared to the globally circulating one (BD1). Shrimp PL artificially challenged with BD1 and BD2 phylotypes with filtrates of tissue containing 0.423 X 109 copies of WSSV per mL resulted a median LT50 value of 73 hrs and 75 hrs, respectively. The in-vivo trial showed higher mean Log WSSV copies (6.47±2.07 per mg tissue) in BD1 challenged shrimp PL compared to BD2 (4.75±0.35 per mg tissue). Crabs infected with BD1 and BD2 showed 100% mortality within 48 hrs and 62 hrs of challenge, respectively with mean Log WSSV copies of 12.06±0.48 and 9.95±0.37 per gram tissue, respectively. Moreover, shrimp antimicrobial peptides (AMPs) penaeidin and lysozyme expression was lower in BD1 challenged group compared to BD2 challenged shrimps. These results collectively demonstrated that relative virulence properties of WSSV based on mortality rate, viral load and expression of host immune genes in artificially infected shrimp PL could be affected by single aa substitution in VP28.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.