Comparison of human immunodeficiency virus lentiviral lytic peptide 1 with other host-derived peptides indicates that antimicrobial properties of membrane-active peptides are markedly influenced by their cationic, hydrophobic, and amphipathic properties. Many common themes, such as Arg composition of the cationic face of an amphipathic helix and the importance of maintaining the hydrophobic face, have been deduced from these observations. These studies suggest that a peptide with these structural properties can be derived de novo by using only a few strategically positioned amino acids. However, the effects of length and helicity on antimicrobial activity and selectivity have not been objectively evaluated in the context of this motif. To address these structure-function issues, multimers of a 12-residue lytic base unit (LBU) peptide composed only of Arg and Val residues aligned to form idealized amphipathic helices were designed. Bacterial killing assays and circular dichroism analyses reveal a strong correlation between antibacterial activity, peptide length, and propensity to form a helix in solvent mimicking the environment of a membrane. Increasing peptide length beyond two LBUs (24-residue peptides) resulted in no appreciable increase in antimicrobial activity. Derivatives (WLBU) of the LBU series were further engineered by substituting Trp residues in the hydrophobic domains. The 24-residue WLBU2 peptide was active at physiologic NaCl concentrations against Staphylococcus aureus and mucoid and nonmucoid strains of Pseudomonas aeruginosa. Further, WLBU2 displayed the highest antibacterial selectivity of all peptides evaluated in the present study by using a coculture model of P. aeruginosa and primary human skin fibroblasts. These findings provide fundamental information toward the de novo design of an antimicrobial peptide useful for the management of infectious diseases.
Cancer vaccines based on human tumor associated antigens (TAA) have been tested in patients with advanced or recurrent cancer, in combination with or following standard therapy. Their immunogenicity and therapeutic efficacy has been difficult to properly evaluate in that setting characterized by multiple highly suppressive effects of the tumor and the standard therapy on the patient’s immune system. In animal models of human cancer, vaccines administered in the prophylactic setting are most immunogenic and effectively prevent cancer development and progression. We report results of a clinical study that show that in patients without cancer but with a history of premalignant lesions (advanced colonic adenomas, precursors to colon cancer), a vaccine based on the TAA MUC1 was highly immunogenic in 17/39 (43.6%) of vaccinated individuals, eliciting high levels of anti-MUC1 IgG and long-lasting immune memory. Lack of response in 22/39 individuals was correlated with high levels of circulating myeloid derived suppressor cells pre-vaccination. Vaccine-elicited MUC1-specific immune response and immune memory were not associated with any toxicity. Our study shows that vaccines based on human tumor associated antigens are immunogenic and safe and capable of eliciting long term memory that is important for cancer prevention. We also show that in the premalignant setting, immunosuppressive environment (e.g. high levels of MDSC) might already exist in some individuals, suggesting an even earlier premalignant stage or preselection of non-immunosuppressed patients for prophylactic vaccination.
Cationic amphipathic peptides have been extensively investigated as a potential source of new antimicrobials that can complement current antibiotic regimens in the face of emerging drug-resistant bacteria. However, the suppression of antimicrobial activity under certain biologically relevant conditions (e.g., serum and physiological salt concentrations) has hampered efforts to develop safe and effective antimicrobial peptides for clinical use. We have analyzed the activity and selectivity of the human peptide LL37 and the de novo engineered antimicrobial peptide WLBU2 in several biologically relevant conditions. The host-derived synthetic peptide LL37 displayed high activity against Pseudomonas aeruginosa but demonstrated staphylococcusspecific sensitivity to NaCl concentrations varying from 50 to 300 mM. Moreover, LL37 potency was variably suppressed in the presence of 1 to 6 mM Mg 2؉ and Ca 2؉ ions. In contrast, WLBU2 maintained its activity in NaCl and physiologic serum concentrations of Mg 2؉ and Ca 2؉ . WLBU2 is able to kill P. aeruginosa (10 6 CFU/ml) in human serum, with a minimum bactericidal concentration of <9 M. Conversely, LL37 is inactive in the presence of human serum. Bacterial killing kinetic assays in serum revealed that WLBU2 achieved complete bacterial killing in 20 min. Consistent with these results was the ability of WLBU2 (15 to 20 M) to eradicate bacteria from ex vivo samples of whole blood. The selectivity of WLBU2 was further demonstrated by its ability to specifically eliminate P. aeruginosa in coculture with human monocytes or skin fibroblasts without detectable adverse effects to the host cells. Finally, WLBU2 displayed potent efficacy against P. aeruginosa in an intraperitoneal infection model using female Swiss Webster mice. These results establish a potential application of WLBU2 in the treatment of bacterial sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.