The ATP-binding cassette transporter A1 (ABCA1) is a membrane-bound exporter protein involved in regulating serum HDL level by exporting cholesterol and phospholipids to load up in lipid-poor ApoA-I and ApoE, which allows the formation of nascent HDL. Mutations in the ABCA1 gene, when presents in both alleles, disrupt the canonical function of ABCA1, which associates with many disorders related to lipid transport. Although many studies have reported the phenotypic effects of a large number of ABCA1 variants, the pathological effect of non-synonymous polymorphisms (nsSNPs) in ABCA1 remains elusive. Therefore, aiming at exploring the structural and functional consequences of nsSNPs in ABCA1, in this study, we employed an integrated computational approach consisting of nine well-known in silico tools to identify damaging SNPs and molecular dynamics (MD) simulation to get insights into the magnitudes of the damaging effects. In silico tools revealed four nsSNPs as being most deleterious, where the two SNPs (G1050V and S1067C) are identified as the highly conserved and functional disrupting mutations located in the NBD1 domain. MD simulation suggested that both SNPs, G1050V and S1067C, changed the overall structural flexibility and dynamics of NBD1, and induced substantial alteration in the structural organization of ATP binding site. Taken together, these findings direct future studies to get more insights into the role of these variants in the loss of the ABCA1 function.
Staphylococcus aureus is a major foodborne pathogen. The ability of S. aureus to produce biofilm is a significant virulence factor, triggering its persistence in hostile environments. In this study, we screened a total of 420 different food samples and human hand swabs to detect S. aureus and to determine their biofilm formation ability. Samples analyzed were meat, milk, eggs, fish, fast foods, and hand swabs. S. aureus were detected by culturing, staining, biochemical, and PCR. Biofilm formation ability was determined by Congo Red Agar (CRA) plate and Crystal Violet Microtiter Plate (CVMP) tests. The icaA, icaB, icaC, icaD, and bap genes involved in the synthesis of biofilm-forming intracellular adhesion compounds were detected by PCR. About 23.81% (100/420; 95% CI: 14.17–29.98%) of the samples harbored S. aureus, as revealed by detection of the nuc gene. The CRA plate test revealed 20% of S. aureus isolates as strong biofilm producers and 69% and 11% as intermediate and non-biofilm producers, respectively. By the CVMP staining method, 20%, 77%, and 3% of the isolates were found to be strong, intermediate, and non-biofilm producers. Furthermore, 21% of S. aureus isolates carried at least one biofilm-forming gene, where icaA, icaB, icaC, icaD, and bap genes were detected in 15%, 20%, 7%, 20%, and 10% of the S. aureus isolates, respectively. Bivariate analysis showed highly significant correlations (p < 0.001) between any of the two adhesion genes of S. aureus isolates. To the best of our knowledge, this is the first study in Bangladesh describing the detection of biofilm-forming S. aureus from foods and hand swabs using molecular-based evidence. Our findings suggest that food samples should be deemed a potential reservoir of biofilm-forming S. aureus, which indicates a potential public health significance.
The eradication of staphylococcal infections has become more difficult due to the development of antibiotic resistance and virulence in biofilm-forming Staphylococcus aureus. The presence of the life-threatening zoonotic pathogen, methicillin-resistant S. aureus (MRSA), in foods indicates a public health issue. This study, therefore, aimed to determine virulence factors and methicillin resistance in biofilm-forming S. aureus isolates from different foods and food handlers. A total of 100 PCR-positive S. aureus isolates (97 biofilm formers and three non-biofilm formers) were screened using the disk diffusion method and PCR assay. By PCR, genes encoding virulence factors, e.g., enterotoxin (sea, 30%, 95% CI: 21.90–39.59%), toxic shock syndrome toxin (tst, 20%, 95% CI: 13.34–28.88%), and Panton–Valentine leukocidin toxin (PVL, 15%, 95% CI: 9.31–23.28%), were detected in the S. aureus isolates. By the disk diffusion method, 100% (95% CI: 96.30–100.00%) of S. aureus isolates were phenotypically MRSA in nature, showing 100% resistance to oxacillin and cefoxitin. Moreover, the methicillin-resistant gene mecA was found in 61 (61%, 95% CI: 51.20–69.98%) MRSA isolates. Furthermore, all the S. aureus isolates were phenotypically resistant to ampicillin and penicillin, 30% to erythromycin, and 11% to gentamycin. Among them, 51% (95% CI: 41.35–60.58%) of S. aureus isolates were phenotypically multidrug-resistant in nature, and the multiple antibiotic resistance index varied from 0.33 to 0.55. Genes encoding resistance to beta-lactams (blaZ, 100%, 95% CI: 96.30–100.00%) and tetracyclines (tetA and tetC, 3%, 95% CI: 0.82–8.45%) were found positive in the S. aureus isolates. Genes encoding virulence determinants and MRSA were significantly (p < 0.05) higher in strong biofilm-forming S. aureus than in moderate and non-biofilm-forming isolates. To our knowledge, this is the first study in Bangladesh to incorporate preliminary data on the occurrence of virulence determinants and methicillin resistance, including resistance to clinically important antibiotics, in biofilm-forming S. aureus isolates from different foods and food handlers in Bangladesh, emphasizing a potential threat to human health.
Eclipta alba is a common folk medicinal plant which is generously known as bhringraj in Indian traditional medicine and as false daisy in English. It belongs to the Asteraceae family, found in almost all over the globe specially in tropical and subtropical region with various vernacular names include kesuriya (Bengali), maakaa (Marathi), yerba de tago (Minnesota), Kehraj (Assamese), Karisalankanni (Tamil), galagara (Telugu), bhangaro (Guajarati), bhangaara (Hindi). The plant has been traditionally used in folk medicine along with Ayurveda and Siddha for its curative properties where it is utilized as anticancer, antimicrobial, analgesic, anti-venom, antioxidant, antimytotoxic, antihyperglycemic, immunomodulatory properties. A broad range of chemical components including alkaloids, coumentans, flavonoids, polyacetylenes, triterpenes, thiopenes and their derivatives have been extracted from this species. These phytochemicals show different pharmacological activities against several common diseases. This contribution provides update about isolated and identified chemical compounds from the plant extract and their traditional and pharmacological activities.
Enterococci are commensal bacteria that inhabit the digestive tracts of animals and humans. The transmission of antibiotic-resistant genes through human–animal contact poses a potential public health risk worldwide, as zoonoses from wildlife reservoirs can occur on every continent. The purpose of this study was to detect Enterococcus spp. in rhesus macaques (Macaca mulatta) and to investigate their resistance patterns, virulence profiles, and biofilm-forming ability. Conventional screening of rectal swabs (n = 67) from macaques was followed by polymerase chain reaction (PCR). The biofilm-forming enterococci were determined using the Congo red agar plate assay. Using the disk diffusion test (DDT), antibiogram profiles were determined, followed by resistance and virulence genes identification by PCR. PCR for bacterial species confirmation revealed that 65.7% (44/67) and 22.4% (15/67) of the samples tested positive for E. faecalis and E. faecium, respectively. All the isolated enterococci were biofilm formers. In the DDT, enterococcal isolates exhibited high to moderate resistance to penicillin, rifampin, ampicillin, erythromycin, vancomycin, and linezolid. In the PCR assays, the resistance gene blaTEM was detected in 61.4% (27/44) of E. faecalis and 60% (9/15) of E. faecium isolates. Interestingly, 88.63 % (39/44) of E. faecalis and 100% (15/15) of E. faecium isolates were phenotypically multidrug-resistant. Virulence genes (agg, fsrA, fsrB, fsrC, gelE, sprE, pil, and ace) were more frequent in E. faecalis compared to E. faecium; however, isolates of both Enterococcus spp. were found negative for the cyl gene. As far as we know, the present study has detected, for the first time in Bangladesh, the presence of virulence genes in MDR biofilm-forming enterococci isolated from rhesus macaques. The findings of this study suggest employing epidemiological surveillance along with the one-health approach to monitor these pathogens in wild animals in Bangladesh, which will aid in preventing their potential transmission to humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.