Single-nucleotide polymorphisms (SNPs) are one of the most common forms of genetic variation and as such are powerful tools for the identification of bacterial strains, their genetic diversity, phylogenetic analysis, and outbreak surveillance. In this study, we used 15 sets of SNP-containing primers to amplify and sequence the target Escherichia coli. Based on the combination of the 15-sequence primer sets, each SNP site encompassing forward and reverse primer sequences (620–919 bp) were aligned and an SNP-based marker was designed. Each SNP marker exists in at least two SNP sites at the 3′ end of each primer; one natural and the other artificially created by transition or transversion mutation. Thus, 12 sets of SNP primers (225–488 bp) were developed for validation by amplifying the target E. coli. Finally, a temperature gradient triplex PCR kit was designed to detect target E. coli strains. The selected primers were amplified in three genes (ileS, thrB, and polB), with fragment sizes of 401, 337, and 232 bp for E. coli O157:H7, E. coli, and E. coli O145:H28, respectively. This allele-specific SNP-based triplex primer assay provides serotype-specific detection of E. coli strains in one reaction tube. The developed marker would be used to diagnose, investigate, and control food-borne E. coli outbreaks.
A rapid and high-quality single-nucleotide polymorphisms (SNPs)-based method was developed to improve detection and reduce salmonellosis burden. In this study, whole-genome sequence (WGS) was used to investigate SNPs, the most common genetic marker for identifying bacteria. SNP-sites encompassing 15 sets of primers (666–863 bp) were selected and used to amplify the target Salmonella serovar strains, and the amplified products were sequenced. The prevalent Salmonella enterica subspecies enterica serovars, including Typhimurium; Enteritidis, Agona, enterica, Typhi, and Abony, were amplified and sequenced. The amplified sequences of six Salmonella serovars with 15 sets of SNP-sites encompassing primers were aligned, explored SNPs, and SNPs-carrying primers (23 sets) were designed to develop a multiplex PCR marker (m-PCR). Each primer exists in at least two SNPs bases at the 3′ end of each primer, such as one was wild, and another was a mismatched base by transition or transversion mutation. Thus, twenty-three sets of SNP primers (242–670 bp), including 13 genes (SBG, dedA, yacG, mrcB, mesJ, metN, rihA/B, modA, hutG, yehX, ybiY, moeB, and sopA), were developed for PCR confirmation of target Salmonella serovar strains. Finally, the SNPs in four genes, including fliA gene (S. Enteritidis), modA (S. Agona and S. enterica), sopA (S. Abony), and mrcB (S. Typhimurium and S. Typhi), were used for detection markers of six target Salmonella serotypes. We developed an m-PCR primer set in which Salmonella serovars were detected in a single reaction. Nevertheless, m-PCR was validated with 21 Salmonella isolates (at least one isolate was taken from one positive animal fecal, and n = 6 reference Salmonella strains) and non-Salmonella bacteria isolates. The SNP-based m-PCR method would identify prevalent Salmonella serotypes, minimize the infection, and control outbreaks.
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has fomented a climate of fear worldwide due to its rapidly spreading nature, and high mortality rate. The World Health Organization declared it a global pandemic on 11 March 2020. Many endeavors have been made to find appropriate medications to restrain the SARS-CoV-2 infection from spreading but there is no specific antiviral therapy to date. However, a computer-aided drug design approach can be an alternative to identify probable drug candidates within a short time. SARS-CoV-2 main protease is a proven drug target, and it plays a pivotal role in viral replication and transcription. Methods: In this study, we identified a total of 114 essential oil compounds as a feasible anti-SARS-CoV-2 agent from several online reservoirs. These compounds were screened by incorporating absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling, molecular docking, and 50 ns of molecular dynamics simulation to identify potential drug candidates. The crystallized SARS-CoV-2 main protease structure was collected from the Research Collaboratory for Structural Bioinformatics Protein Data Bank database (Protein Data Bank ID 6LU7). Results: According to the results of the ADMET study, none of the compounds have any side effects that could reduce their druglikeness or pharmacokinetic properties. Among 114 compounds, we selected bisabololoxide B, eremanthin, and leptospermone as top drug candidates based on their higher binding affinity scores, and strong interaction with the Cys 145-His 41 catalytic dyad. Finally, the molecular dynamics simulation was implemented to evaluate the structural stability of the ligand-receptor complex. Molecular dynamics simulation disclosed that all the hits showed conformational stability compared to the positive control α-ketoamide. Conclusions: Our study showed that the top three hits might work as potential anti-SARS-CoV-2 agents, which can pave the way for discovering new drugs, but further in vivo trials will require for experimental validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.