Chemical transfection is broadly used to transiently transfect mammalian cells, although often associated with cellular stress and membrane instability, which imposes challenges for most cellular assays, including high-throughput (HT) assays. In the current study, we compared the effectiveness of calcium phosphate, FuGENE and Lipofectamine 3000 to transiently express two key voltage-gated ion channels critical in pain pathways, CaV2.2 and NaV1.7. The expression and function of these channels were validated using two HT platforms, the Fluorescence Imaging Plate Reader FLIPRTetra and the automated patch clamp QPatch 16X. We found that all transfection methods tested demonstrated similar effectiveness when applied to FLIPRTetra assays. Lipofectamine 3000-mediated transfection produced the largest peak currents for automated patch clamp QPatch assays. However, the FuGENE-mediated transfection was the most effective for QPatch assays as indicated by the superior number of cells displaying GΩ seal formation in whole-cell patch clamp configuration, medium to large peak currents, and higher rates of accomplished assays for both CaV2.2 and NaV1.7 channels. Our findings can facilitate the development of HT automated patch clamp assays for the discovery and characterization of novel analgesics and modulators of pain pathways, as well as assisting studies examining the pharmacology of mutated channels.
The peripheral effects of ω-conotoxins, selective blockers of N-type voltage-gated calcium channels (CaV2.2), have not been characterised across different clinically relevant pain models. This study examines the effects of locally administered ω-conotoxin MVIIA, GVIA, and CVIF on mechanical and thermal paw withdrawal threshold (PWT) in postsurgical pain (PSP), cisplatin-induced neuropathy (CisIPN), and oxaliplatin-induced neuropathy (OIPN) rodent models. Intraplantar injection of 300, 100 and 30 nM MVIIA significantly (p < 0.0001, p < 0.0001, and p < 0.05, respectively) alleviated mechanical allodynia of mice in PSP model compared to vehicle control group. Similarly, intraplantar injection of 300, 100, and 30 nM MVIIA (p < 0.0001, p < 0.01, and p < 0.05, respectively), and 300 nM and 100 nM GVIA (p < 0.0001 and p < 0.05, respectively) significantly increased mechanical thresholds of mice in OIPN model. The ED50 of GVIA and MVIIA in OIPN was found to be 1.8 pmol/paw and 0.8 pmol/paw, respectively. However, none of the ω-conotoxins were effective in a mouse model of CisIPN. The intraplantar administration of 300 nM GVIA, MVIIA, and CVIF did not cause any locomotor side effects. The intraplantar administration of MVIIA can alleviate incision-induced mechanical allodynia, and GVIA and MVIIA effectively reduce OIPN associated mechanical pain, without locomotor side effects, in rodent models. In contrast, CVIF was inactive in these pain models, suggesting it is unable to block a subset of N-type voltage-gated calcium channels associated with nociceptors in the skin.
Different new media tools like Facebook, blogs, wikis, Google docs and YouTube are perceived to have effects on English language (L2) learner motivation at the tertiary level in Bangladesh. However, the effects of new media usage on L2 learner motivation are not defined yet in the context. This study investigates the effects of new media usage on L2 learner motivation at the tertiary level. A qualitative research design is used throughout the study to collect and analyze the data. Data were collected through six Focus Group Discussion (FGD) with 30 tertiary level English language learners from eight universities located in Bangladesh. The findings of the study show that new media usage in English language learning motivates learners immensely, transforms dependent and passive learners into active and autonomous learners, makes them participatory, engaging and enthusiastic in learning, and works as a supplement to the classroom teachings. However, culturally inappropriate and wrong interpretation of some language contents in new media tools demotivates learners. Therefore, the usage of new media tools in enhancing learner motivation needs to be keenly monitored to reduce adverse effects. The study recommends future research to be conducted to assess the negative washback of new media usage affecting L2 learners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.