BACKGROUND: The novel coronavirus disease 2019 (COVID-19) constitutes a public health emergency globally. The number of infected people and deaths are proliferating every day, which is putting tremendous pressure on our social and healthcare system. Rapid detection of COVID-19 cases is a significant step to fight against this virus as well as release pressure off the healthcare system. OBJECTIVE: One of the critical factors behind the rapid spread of COVID-19 pandemic is a lengthy clinical testing time. The imaging tool, such as Chest X-ray (CXR), can speed up the identification process. Therefore, our objective is to develop an automated CAD system for the detection of COVID-19 samples from healthy and pneumonia cases using CXR images. METHODS: Due to the scarcity of the COVID-19 benchmark dataset, we have employed deep transfer learning techniques, where we examined 15 different pre-trained CNN models to find the most suitable one for this task. RESULTS: A total of 860 images (260 COVID-19 cases, 300 healthy and 300 pneumonia cases) have been employed to investigate the performance of the proposed algorithm, where 70% images of each class are accepted for training, 15% is used for validation, and rest is for testing. It is observed that the VGG19 obtains the highest classification accuracy of 89.3% with an average precision, recall, and F1 score of 0.90, 0.89, 0.90, respectively. CONCLUSION: This study demonstrates the effectiveness of deep transfer learning techniques for the identification of COVID-19 cases using CXR images.
Breast cancer is one of the most common and deadliest cancers among women. Since histopathological images contain sufficient phenotypic information, they play an indispensable role in the diagnosis and treatment of breast cancers. To improve the accuracy and objectivity of Breast Histopathological Image Analysis (BHIA), Artificial Neural Network (ANN) approaches are widely used in the segmentation and classification tasks of breast histopathological images. In this review, we present a comprehensive overview of the BHIA techniques based on ANNs. First of all, we categorize the BHIA systems into classical and deep neural networks for in-depth investigation. Then, the relevant studies based on BHIA systems are presented. After that, we analyze the existing models to discover the most suitable algorithms. Finally, publicly accessible datasets, along with their download links, are provided for the convenience of future researchers.
Cervical cancer is one of the most common and deadliest cancers among women. Despite that, this cancer is entirely treatable if it is detected at a precancerous stage. Pap smear test is the most extensively performed screening method for early detection of cervical cancer. However, this hand-operated screening approach suffers from a high false-positive result because of human errors. To improve the accuracy and manual screening practice, computer-aided diagnosis methods based on deep learning is developed widely to segment and classify the cervical cytology images automatically. In this survey, we provide a comprehensive study of the state of the art approaches based on deep learning for the analysis of cervical cytology images. Firstly, we introduce deep learning and its simplified architectures that have been used in this field. Secondly, we discuss the publicly available cervical cytopathology datasets and evaluation metrics for segmentation and classification tasks. Then, a thorough review of the recent development of deep learning for the segmentation and classification of cervical cytology images is presented. Finally, we investigate the existing methodology along with the most suitable techniques for the analysis of pap smear cells.
In recent years, researches are concentrating on the effectiveness of Transfer Learning (TL) and Ensemble Learning (EL) techniques in cervical histopathology image analysis. However, there have been very few investigations that have described the stages of differentiation of cervical histopathological images. Therefore, in this article, we propose an Ensembled Transfer Learning (ETL) framework to classify well, moderate and poorly differentiated cervical histopathological images. First of all, we have developed Inception-V3, Xception, VGG-16, and Resnet-50 based TL structures. Then, to enhance the classification performance, a weighted voting based EL strategy is introduced. After that, to evaluate the proposed algorithm, a dataset consisting of 307 images, stained by three immunohistochemistry methods (AQP, HIF, and VEGF) is considered. In the experiment, we obtain the highest overall accuracy of 97.03% and 98.61% on AQP staining images and poor differentiation of VEGF staining images, individually. Finally, an additional experiment for classifying the benign cells from the malignant ones is carried out on the Herlev dataset and obtains an overall accuracy of 98.37%.
Microorganisms such as bacteria and fungi play essential roles in many application fields, like biotechnique, medical technique and industrial domain. Microorganism counting techniques are crucial in microorganism analysis, helping biologists and related researchers quantitatively analyze the microorganisms and calculate their characteristics, such as biomass concentration and biological activity. However, traditional microorganism manual counting methods, such as plate counting method, hemocytometry and turbidimetry, are time-consuming, subjective and need complex operations, which are difficult to be applied in large-scale applications. In order to improve this situation, image analysis is applied for microorganism counting since the 1980s, which consists of digital image processing, image segmentation, image classification and suchlike. Image analysis-based microorganism counting methods are efficient comparing with traditional plate counting methods. In this article, we have studied the development of microorganism counting methods using digital image analysis. Firstly, the microorganisms are grouped as bacteria and other microorganisms. Then, the related articles are summarized based on image segmentation methods. Each part of the article is reviewed by methodologies. Moreover, commonly used image processing methods for microorganism counting are summarized and analyzed to find common technological points. More than 144 papers are outlined in this article. In conclusion, this paper provides new ideas for the future development trend of microorganism counting, and provides systematic suggestions for implementing integrated microorganism counting systems in the future. Researchers in other fields can refer to the techniques analyzed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.