The human brain tends to follow a rhythm. Sound has a significant impact on our physical and mental health. This sound technology uses binaural beat by generating two tones of marginally different frequencies in each individual ear to facilitate the improved focus of attention, emotion, calming, and sensory organization. Binaural beat helps in memory boosting, relaxation, and work performance. Again because of hearing a binaural beat sound, brainwave stimuli can be diagnosed to pick up a person’s sensitive information. Using this technology in brain-computer interfacing, it is possible to establish a communication between the brain and the computer. Thus, it enables us to go beyond our potential. The aim of this study is to assess the impact and explore the potential contribution of binaural beat to enhancement of human brain performance.
The recognition of handwritten Bangla digit is providing significant progress on optical character recognition (OCR). It is a very critical task due to the similar pattern and alignment of handwriting digits. With the progress of modern research on optical character recognition, it is reducing the complexity of the classification task by several methods, a few problems encounter during recognition and wait to be solved with simpler methods. The modern emerging field of artificial intelligence is the Deep Neural Network, which promises a solid solution to these few handwritten recognition problems. This paper proposed a fine regulated deep neural network (FRDNN) for the handwritten numeric character recognition problem that uses convolutional neural network (CNN) models with regularization parameters which makes the model generalized by preventing the overfitting. This paper applied Traditional Deep Neural Network (TDNN) and Fine regulated deep neural network (FRDNN) models with a similar layer experienced on BanglaLekha-Isolated databases and the classification accuracies for the two models were 96.25% and 96.99%, respectively over 100 epochs. The network performance of the FRDNN model on the BanglaLekha-Isolated digit dataset was more robust and accurate than the TDNN model and depend on experimentation. Our proposed method is obtained a good recognition accuracy compared with other existing available methods.
In recent few years, hand gesture recognition is one of the advanced grooming technologies in the era of human computer interaction and computer vision due to a wide area of application in the real world. But it is a very complicated task to recognize hand gesture easily due to gesture orientation, light condition, complex background, translation and scaling of gesture images. To remove this limitation, several research works have developed which is successfully decrease this complexity. However, the intention of this paper is proposed and compared four different hand gesture recognition system and apply some optimization technique on it which ridiculously increased the existing model accuracy and model running time. After employed the optimization tricks, the adjusted gesture recognition model accuracy was 93.21% and the run time was 224 seconds which was 2.14% and 248 seconds faster than an existing similar hand gesture recognition model. The overall achievement of this paper could be applied for smart home control, camera control, robot control, medical system, natural talk, and many other fields in computer vision and human-computer interaction.
Medical image processing is the most important and challenging field now days. MRI image processing is one of the parts of this field. Brain tumour segmentation in magnetic resonance imaging (MRI) has become an emergent research area in the field of medical imaging system. In this paper we proposed a variational level set method and some morphological operation to segment the brain tumour from MRI image by using MATLAB. Actually we describe variational formulation on geometric active contours that forces the level set function at zero level to be close to signed distance function and without re-initialization process. The variational formulation uses energy function and partial diferential equation to evolve the level set function. Tumour shape area is connected component in binary image and calculated this connected area using some properties of morphological operation.
Face recognition is truly one of the demanding fields of biometric image processing system. Within this paper, we have implemented Back Propagation Neural Network for face recognition using MATLAB, where feature extraction and face identification system completely depend on Principal Component Analysis (PCA). Face images are multidimensional and variable data. Hence we cannot directly apply Back Propagation Neural Network to classify face without extracting the core area of face. So, the dimensionality of face image is reduced by the Principal Component Analysis algorithm then we have to explore unique feature for all stored database images called eigenfaces of eigenvectors. These unique features or eigenvectors are given as parallel input to the Back Propagation Neural Network (BPNN) for recognition of given test images. Here test image is taken from the integrated webcam which is applied to the BPNN trained network. The maximum output of the tested network gives the index of recognized face image. BPNN employing PCA is more robust and reliable than PCA based face recognition system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.