We experimentally observed for the first time a bell-shaped (convex parabolic) differential capacitance versus potential (C dl -E) curve, which is expected according to the theory of Kornyshev given for the electrical double layer (EDL) of metal electrode/ionic liquid (IL) interface, at platinum and gold electrodes in four different [quaternary ammonium, imidazolium, and pyrrolidinium cations and bis(trifluoromethanesulfonyl)imide anion-based] ILs with cations and anions of similar sizes. The C dl -E curves measured at a glassy carbon (nonmetallic) electrode in the same set of ILs were found to be U-shaped, in contrast to those obtained at platinum and gold electrodes. The present study corroborates the so-called Kornyshev's model of the EDL at metal electrode/IL interfaces and at the same time demands a theoretical model for the nonmetallic electrode/ IL interface. The EDL formation in ILs is discussed.
An extensive study has been done for the first time on the structure of the electrical double layer (EDL) at polarized glassy carbon (GC) and gold (Au) electrode interfaces in a series of room-temperature ionic liquids (RTILs) via the measurement of capacitance-potential curves. The parabolic capacitance-potential curves similar to those observed in high-temperature inorganic molten salts were obtained at GC electrode in all of the RTILs studied. Potential of zero charge (PZC) at GC electrode in imidazolium-based RTILs depends significantly on the electrochemical pretreatment of the electrode surface: Electrochemical oxidation pretreatment generates the oxide surface on GC electrode, which results in a favorable adsorption of positively charged imidazolium cations on the electrode surface and in turn shifts the PZC to the positive direction of potential, whereas at the electrochemically reduced GC electrode, on which the adsorption of the imidazolium cations is less favorable, PZC shifts to the negative direction of potential. Such an effect of electrochemical pretreatment was not observed at the highly oriented pyrolytic graphite electrode. The hump on the anodic side of the capacitance-potential curves at Au electrode in imidazolium-based RTILs results from the π-electronic interaction of the imidazolium ring with the metal electrode, which was substantiated by using nonmetallic electrode and varying the ions of the RTILs. Such an enhanced interaction of the imidazolium ring with a gold electrode, as in the case of anion adsorption, shifts the PZC to the negative direction of potential. Such a hump as that observed at the gold electrode was not observed at the GC electrode. Similarly to the case in high-temperature inorganic molten salts, capacitances at PZC increase with increasing temperature. Different aspects of the obtained capacitance-potential curves are interpreted satisfactorily based on the hitherto proposed concept of the EDL structures.
Differential capacitances were measured at Hg/room-temperature ionic liquids (RTILs) interfaces as a function of potential with the aim of getting an insight of their interfacial structures. Capacitance−potential curve measured at Hg in 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) resembles well the inner layer capacity at the Hg/aqueous solution interface containing nonspecifically adsorbing electrolyte. In both cases, the hump decreases with an increase in temperature which is discussed in the light of the previous theory. Both the alkyl group and the charged moiety of the cation of 1-alkyl-3-methylimidazolium based RTILs are found to interact concurrently with the Hg surface with the possible change of their orientation in response to the applied potential, and the appearance of a shallow minimum in the capacitance−potential curve related to potential of zero charge (PZC) depends on the extent of their interaction. PZC shifts to the negative direction of potential with increasing the chain length of alkyl residue of the cationic moiety because of the constraint in the orientational change needed for the interaction of positively charged imidazolium ring with Hg surface. Electrocapillary curves were also measured to determine the PZC. Throughout this study, a minimum of the capacitance−potential curve is designated as the PZC in agreement with the maximum of the corresponding electrocapillary curve. Different aspects of the capacitance−potential curves are interpreted satisfactorily on the basis of the hitherto proposed concept of electrical double layer structure.
The stability of superoxide ion (O(2)(*-)) generated chemically by dissolving KO(2) in dried dimethyl sulfoxide solutions containing imidazolium cation [e.g., 1-ethyl-3-methylimidazolium (EMI(+)) and 1-n-butyl-2,3-dimethylimidazolium (BMMI(+))] based ionic liquids (ILs) was investigated with UV-visible spectroscopic, NMR, and voltammetric techniques and an ab initio molecular orbital calculation. UV-visible spectroscopic and cyclic voltammetric measurements reveal that the O(2)(*-) species reacts with BMMI(+) and EMI(+) cations of ILs to form hydrogen peroxide. The pseudo first order rate constant for the reaction of BMMI(+) and O(2)(*-) species was found to be about 2.5 x 10(-3) s(-1). With a molecular orbital calculation, the O(2)(*-) species is understood to attack the 2-position (C-2) of the imidazolium ring (i.e., BMMI(+)) to form an ion pair complex in which one oxygen atom is bounded to C-2 and the other to the hydrogen atom of -CH(3) group attached to C-2. Eventually, the ion pair complex of BMMI(+) cation and O(2)(*-) species undergoes a ring opening reaction as evidenced with (1)H NMR measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.