Pyrene shows very weak or quenched fluorescence in the solid state, but it is possible to turn it to a bright solid emitter by using aggregation-induced emission (AIE) strategies.
The morphology of pyrene-based AIEgens changes depending on the water fraction. The different size distribution and morphological changes of nano-particle species play a significant role in enhancing the emission intensity in the aggregated state.
Both the variety and uniqueness of organic semiconductors has contributed to the rapid development of environmental engineering applications and renewable fuel production, typified by the photodegradation of organic pollutants or water splitting. This paper presents a rare example of an aggregation‐induced emission luminogen as a highly efficient photocatalyst for pollutant decomposition in an environmentally relevant application. Under irradiation, the tetraphenylethene‐based AIEgen (TPE‐Ca) exhibited high photo‐degradation efficiency of up to 98.7% of Rhodamine B (RhB) in aqueous solution. The possible photocatalytic mechanism was studied by electron paramagnetic resonance and X‐ray photoelectron spectroscopy spectra, electrochemistry, thermal imaging technology, ultra‐performance liquid chromatography and high‐definition mass spectrometry, as well as by density functional theory calculations. Among the many diverse AIEgens, this is the first AIEgen to be developed as a photocatalyst for the degradation of organic pollutants. This research will open up new avenues for AIEgens research, particularly for applications of environmental relevance.image
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.