This study characterized Pokkali-derived quantitative trait loci (QTLs) for seedling stage salinity tolerance in preparation for use in marker-assisted breeding. An analysis of 100 SSR markers on 140 IR29/Pokkali recombinant inbred lines (RILs) confirmed the location of the Saltol QTL on chromosome 1 and identified additional QTLs associated with tolerance. Analysis of a series of backcross lines and near-isogenic lines (NILs) developed to better characterize the effect of the Saltol locus revealed that Saltol mainly acted to control shoot Na + /K + homeostasis. Multiple QTLs were required to acquire a high level of tolerance. Unexpectedly, multiple Pokkali alleles at Saltol were detected within the RIL population and between backcross lines, and representative lines were compared with seven Pokkali accessions to better characterize this allelic variation. Thus, while the Saltol locus presents a complex scenario, it provides an opportunity for markerassisted backcrossing to improve salt tolerance of popular varieties followed by targeting multiple loci through QTL pyramiding for areas with higher salt stress.
Zinc (Zn) is one of the most essential micronutrients required for the growth and development of human beings. More than one billion people, particularly children and pregnant women suffer from Zn deficiency related health problems in Asia. Rice is the major staple food for Asians, but the presently grown popular high yielding rice varieties are poor supplier of Zn in their polished form. Breeding rice varieties with high grain Zn has been suggested to be a sustainable, targeted, food-based and cost effective approach in alleviating Zn deficiency. The physiological, genetic and molecular mechanisms of Zn homeostasis have been well studied, but these mechanisms need to be characterized from a biofortification perspective and should be well integrated with the breeding processes. There is a significant variation for grain Zn in rice germplasm and efforts are being directed at exploiting this variation through breeding to develop high Zn rice varieties. Several QTLs and gene specific markers have been identified for grain Zn and there is a great potential to use them in Marker-Assisted Breeding. A thorough characterization of genotype and environmental interactions is essential to identify key environmental factors influencing grain Zn. Agronomic biofortification has shown inconsistent results, but a combination of genetic and agronomic biofortification strategies may be more effective. Significant progress has been made in developing high Zn rice lines for release in target countries. A holistic breeding approach involving high Zn trait development, high Zn product development, product testing and release, including bioefficacy and bioavailability studies is essential for successful Zn biofortification.Electronic supplementary materialThe online version of this article (doi:10.1186/s12284-016-0122-5) contains supplementary material, which is available to authorized users.
Rice production needs to increase in the future in order to meet increasing demands. The development of new improved and higher yielding varieties more quickly will be needed to meet this demand. However, most rice breeding programmes in the world have not changed in several decades. In this article, we revisit the evidence in favour of using rapid generation advance (RGA) as a routine breeding method. We describe preliminary activities at the International Rice Research Institute (IRRI) to re-establish RGA on a large scale as the main breeding method for irrigated rice breeding. We also describe experiences from the early adoption at the Bangladesh Rice Research Institute. Evaluation of RGA breeding lines at IRRI for yield, flowering time and plant height indicated transgressive segregation for all traits. Some RGA lines were also higher yielding than the check varieties. The cost advantages of using RGA compared to the pedigree method were also empirically determined by performing an economic analysis. This indicated that RGA is several times more cost effective and advantages will be realized after 1 year even if facilities need to be built. Based on our experience, and previous independent research empirically testing the RGA method in rice, we recommend that this method should be implemented for routine rice breeding in order to improve breeding efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.