Acceleration is an important driving maneuver that has been modelled for decades as a critical element of the microscopic traffic simulation tools. The state-of-the art acceleration models have however primarily focused on lane based traffic. In lane based traffic, every driver has a single distinct lead vehicle in the front and the acceleration of the driver is typically modelled as a function of the relative speed, position and/or type of the corresponding leader. On the contrary, in a traffic stream with weak lane discipline, the subject driver may have multiple vehicles in the front. The subject driver is therefore subjected to multiple sources of stimulus for acceleration and reacts to the stimulus from the governing leader. Hence, only the applied accelerations are observed in the trajectory data, and the governing leader is unobserved or latent. The state-of-the-art models therefore cannot be directly applied to traffic streams with weak lane discipline.This prompts the current research where we present a latent leader acceleration model. The model has two components: a random utility based dynamic class membership model (latent leader component) and a class-specific acceleration model (acceleration component). The parameters of the model have been calibrated using detailed trajectory data collected from Dhaka, Bangladesh. Results indicate that the probability of a given front vehicle of being the governing leader can depend on the type of the lead vehicle and the extent of lateral overlap with the subject driver. The estimation results are compared against a simpler acceleration model (where the leader is determined deterministically) and a significant improvement in the goodness-of-fit is observed. The proposed models, when implemented in microscopic traffic simulation tools, are expected to result more realistic representation of traffic streams with weak lane discipline.
Cowpea (Vigna unguiculata (L.) Walp.) is one of the most important grain legumes worldwide and its production is affected by increasing soil salinity due to global climate change. An experiment was conducted at the Plant Physiology Laboratory of the Department of Crop Botany, Bangladesh Agricultural University, Mymensingh to evaluate the germination capability of seven cowpea genotypes under salt stress. The germination test was carried out in Petri dishes following two factorial CRD with three replications. Seven cowpea genotypes viz, Red Pine, Green Super, Hai Jiang San Hao, Kegornatki, Kegornatki Green, Kegornatki HYV & Kegornatki Red; and three salt levels viz, 0, 6 & 12 dSm-1, were used as experimental treatments. The germination percentage (GP), mean germination time (MGT), radicle and plumule length, radicle and plumule fresh and dry weight and different stress tolerance indices were recorded to screen the genotypes for salt tolerance. The study highlighted that salt concentrations drastically reduced seed germination and significantly delayed the process in all genotypes. The GP, length and biomass of radicle and plumule and salt tolerance indices were significantly decreased while the MGT was significantly increased with increasing salt stress in all cowpea genotypes. A significant variation among the genotypes in response to salt stress was also observed. Among the seven cowpea genotypes, Hai Jiang San Hao and Green Super showed higher salt tolerance in comparison to the other genotypes based on the measured traits; these genotypes can be used for further breeding program and/or cultivation in coastal saline prone areas with further investigation.
J. Bangladesh Agril. Univ. 17(1): 39–44, March 2019
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.