This study reports on performance enhancement of a Cu2ZnSnS4 solar cell introducing Sb2S3 as hole transport layer (HTL) along WS2 as buffer layer. We have investigated photovoltaic (PV) characteristics by utilizing SCAPS‐1D. A comparative analysis on PV performances between conventional CZTS/CdS and proposed Ni/Sb2S3/CZTS/WS2/FTO/Al solar cells is presented. It is revealed that “spike like” band structure at the CZTS/WS2 interface having smaller conduction band offset makes it potential alternative to commonly used CdS buffer. This report also evaluates that the Sb2S3 as an HTL inserted at the rear of CZTS enhances performances by reducing carrier recombination at back interface with appropriate band alignment. The impacts of thickness, carrier concentration of different layers, and bulk defect density in CZTS as well as the interface defects on cell outputs are analyzed. The influences of temperature, work function, and cell resistances are also examined. Optimum absorber thickness of 1.0 μm along doping density of 1017 cm−3 is selected. A maximum efficiency of 30.63% is achieved for the optimized CZTS cell. Therefore, these results suggest that Sb2S3 as HTL and WS2 as buffer layer can be employed effectively to develop highly efficient and low‐cost CZTS solar cells.
This study reports on performance enhancement in a solar cell introducing Sb2S3 as hole transport layer (HTL)along WS2 as buffer layer. We have investigated photovoltaic (PV) characteristics by utilizing SCAPS-1D. A comparative observation on PV performances of conventional CZTS/CdS with proposed CZTS/WS2 and Ni/Sb2S3/CZTS/WS2 /FTO/Al solar cells is presented. It is revealed that “spike like” band structure at CZTS/WS2 interface having smaller conduction band offset makes it potential alternative to commonly used CdS buffer. This study also evaluates that Sb2S3 as an HTL proposed at back of CZTS enhances performances by reducing carrier recombination at back interface with appropriate band alignment. The impacts of thickness, carrier concentration of different layers, and bulk defect density in CZTS as well as defects at interfaces on performances are analyzed. The influences of temperature, work function as well as cell resistances are also explored. Optimum absorber thickness of 1.0 µm along doping of 10 17 cm-3 is selected. A maximum efficiency of 30.63% is achieved for the optimized CZTS cell. Therefore, these results suggest that Sb2S3 as HTLand WS2 as buffer layer can be employed effectively to develop highly efficient and low-cost CZTS solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.