Sharks and rays evolved 450 million years ago, during the Late Ordovician Period. However, during the modern Anthropocene, shark populations have declined at considerable rates, and recent global assessments indicate about one in three species is threatened with extinction. A notable reason for this elevated extinction risk is overfishing linked to increased demand for shark fins and other products. Here, we review multiple dimensions of consuming shark products, ranging from stock sustainability, product (mis)labelling and trade, the human health implications of consuming shark products, and illegal, unreported and unregulated fishing and slavery and labour abuses in the fishing industry. We conclude that traceability and increased transparency in seafood supply chains is essential to overcome obstacles to consumption of sustainable, ethical and healthy shark products. We also provide a decision tree outlining steps in consumer choice that would foster such consumption. Our aim is to provide a holistic view on issues concerning the consumption of shark products that will help policymakers, the public, management and law enforcement agencies to advocate for ecologically‐ and ethically sustainable consumption of shark products and thereby empower the general public to make informed decisions on which shark products they consume.
In this study, previously published Rab7 sequences from National Center for Biotechnology Information (NCBI) have been investigated from chordates, mollusks, annelids, cnidarians, amphibians, priapulids, brachiopods, and arthropods including decapods and other groups. Among decapod crustacean isolates, amino acid variations were found in 13 locations. Penaeid shrimps had variations in positions 13 (I ⟶ J), 22 (T ⟶ A), 124 (G ⟶ X), and 149 (V ⟶ X) while interestingly the freshwater prawn and mitten crab both had amino acid substitutions in positions 87 (V ⟶ C) and 95 (T ⟶ S) along with the other disagreements in amino acid positions 178 (S ⟶ N), 201 (D ⟶ E), 181 (E ⟶ D), 182 (L ⟶ I), 183 (Y ⟶ G), 184 (N ⟶ H), and 198 (A ⟶ T). Among 100 isolates of Rab7 from organisms of various phyla, mutations were observed in several positions. These mutations caused variations in hydrophobicity and isoelectric point which impact the ligand-protein binding affinity. Some common mutations were found in the organisms of the same phylum and among different phyla. Homology modeling of Rab7 proteins from different organisms was done using SWISS-MODEL and validated further by developing Ramachandran plots. Protein-protein docking showed that active residues were there in the binding interfaces of Rab7 from organisms of seven different phyla and VP28 of WSSV. Similarities were observed in the Rab7-VP28 complexes in those selected organisms which differed from the Rab7-VP28 complex in the case of Penaeid shrimp. The findings of this study suggest that WSSV may exist in different marine organisms that have Rab7 protein and transmit to crustaceans like shrimps and crabs which are of commercial importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.