We propose a mathematical model for prey–predator interactions allowing prey refuge. A prey–predator model is considered in the present investigation with the inclusion of Holling type-II response function incorporating a prey refuge depending on both prey and predator species. We have analyzed the system for different interesting dynamical behaviors, such as, persistent, permanent, uniform boundedness, existence, feasibility of equilibria and their stability. The ranges of the significant parameters under which the system admits a Hopf bifurcation are investigated. The system exhibits Hopf-bifurcation around the unique interior equilibrium point of the system. The explicit formula for determining the stability, direction and periodicity of bifurcating periodic solutions are also derived with the use of both the normal form and the center manifold theory. The theoretical findings of this study are substantially validated by enough numerical simulations. The ecological implications of the obtained results are discussed as well.
. The present investigation deals with the disease in the prey population having significant role in curbing the dynamical behaviour of the system of prey-predator interactions from both ecological and mathematical point of view. The predator-prey model introduced by Cosner et al. [1] has been wisely modified in the present work based on the biological point of considerations. Here one introduces the disease which may spread among the prey species only. Following the formulation of the model, all the equilibria are systematically analyzed and the existence of a Hopf bifurcation at the interior equilibrium has been duly carried out through their graphical representations with appropriate discussion in order to validate the applicability of the system under consideration
Formation of spatial patterns in prey-predator system is a central issue in ecology. In this paper Turing structure through diffusion driven instability in a modified Leslie-Gower and Holling-type II predator-prey model has been investigated. The parametric space for which Turing spatial structure takes place has been found out. Extensive numerical experiments have been performed to show the role of diffusion coefficients and other important parameters of the system in Turing instability that produces some elegant patterns that have not been observed in the earlier findings. Finally it is concluded that the diffusion can lead the prey population to become isolated in the two-dimensional spatial domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.