Diabetic retinopathy (DR) is a worldwide problem associated with the human retina. It leads to minor and major blindness and is more prevalent among adults. Automated screening saves time of medical care specialists. In this work, we have used different deep learning (DL) based 3D convolutional neural network (3D-CNN) architectures for binary and multiclass (5 classes) classification of DR. We have considered mild, moderate, no, proliferate, and severe DR categories. We have deployed two artificial data augmentation/enhancement methods: random weak Gaussian blurring and random shift along with their combination to accomplish these tasks in the spatial domain. In the binary classification case, we have found the performance of 3D-CNN architecture trained by deploying combined augmentation methods to be the best, while in the multiclass case, the performance of model trained without augmentation is the best. It is observed that the DL algorithms working with large volumes of data may achieve better performances as compared to the methods working with small volumes of data.
Cancer has been found as a heterogeneous disease with various subtypes and aims to destroy the body’s normal cells abruptly. As a result, it is essential to detect and prognosis the distinct type of cancer since they may help cancer survivors with treatment in the early stage. It must also divide cancer patients into high- and low-risk groups. While realizing efficient detection of cancer is frequently a time-taking and exhausting task with the high possibility of pathologist errors and previous studies employed data mining and machine learning (ML) techniques to identify cancer, these strategies rely on handcrafted feature extraction techniques that result in incorrect classification. On the contrary, deep learning (DL) is robust in feature extraction and has recently been widely used for classification and detection purposes. This research implemented a novel hybrid AlexNet-gated recurrent unit (AlexNet-GRU) model for the lymph node (LN) breast cancer detection and classification. We have used a well-known Kaggle (PCam) data set to classify LN cancer samples. This study is tested and compared among three models: convolutional neural network GRU (CNN-GRU), CNN long short-term memory (CNN-LSTM), and the proposed AlexNet-GRU. The experimental results indicated that the performance metrics accuracy, precision, sensitivity, and specificity (99.50%, 98.10%, 98.90%, and 97.50) of the proposed model can reduce the pathologist errors that occur during the diagnosis process of incorrect classification and significantly better performance than CNN-GRU and CNN-LSTM models. The proposed model is compared with other recent ML/DL algorithms to analyze the model’s efficiency, which reveals that the proposed AlexNet-GRU model is computationally efficient. Also, the proposed model presents its superiority over state-of-the-art methods for LN breast cancer detection and classification.
Alzheimer’s disease (AD) is an irreversible illness of the brain impacting the functional and daily activities of elderly population worldwide. Neuroimaging sensory systems such as Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) measure the pathological changes in the brain associated with this disorder especially in its early stages. Deep learning (DL) architectures such as Convolutional Neural Networks (CNNs) are successfully used in recognition, classification, segmentation, detection, and other domains for data interpretation. Data augmentation schemes work alongside DL techniques and may impact the final task performance positively or negatively. In this work, we have studied and compared the impact of three data augmentation techniques on the final performances of CNN architectures in the 3D domain for the early diagnosis of AD. We have studied both binary and multiclass classification problems using MRI and PET neuroimaging modalities. We have found the performance of random zoomed in/out augmentation to be the best among all the augmentation methods. It is also observed that combining different augmentation methods may result in deteriorating performances on the classification tasks. Furthermore, we have seen that architecture engineering has less impact on the final classification performance in comparison to the data manipulation schemes. We have also observed that deeper architectures may not provide performance advantages in comparison to their shallower counterparts. We have further observed that these augmentation schemes do not alleviate the class imbalance issue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.