Community and portal websites like Twitter, Facebook, Tumbler, Instagram, and LinkedIn etc. have significant impact in our day-to-day life. One of the most popular micro-blogging platforms is twitter that can provide a huge amount of data which in future can be used for various applications of opinion mining like predictions, reviews, elections, marketing etc. The users use this platform to share their views, express sentiments on various events of their daily life. Previously, many researchers have worked with twitter sentiment analysis and compared various classifiers and got the accuracy below 82%. In this work for classifying tweets into sentiments, we have used various classifiers such as Naïve Bayes, Support Vector Machine and Maximum Entropy that segregate the positive and negative tweets. Using Bigram Collocation with classifiers, we’ve acquired 88.42% accuracy. KEYWORDS: Twitter; Sentiment Classification; Machine Learning; NLTK; Python; Naïve Bayes; Support Vector Machine (SVM); Maximum Entropy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.