The present study attempted to determine the influence of exogenous oxidative stress on the cell viability of Escherichia coli. In this regard, 3mM hydrogen peroxide (H 2 O 2) was added to the late log phase of E. coli culture, and afterwards the phenotype, cell morphology and the ability to form colony forming units (CFU) on agar plates were examined. As expected, a quick phenotypic suppression as well as a rapid decline in viable and culturable cell numbers was observed at the mid-stationary phase as compared to control. Interestingly, a large mass of cell aggregates was noticed upon addition of H 2 O 2. Thus the current investigation corroborated the previous findings and further added to the existing knowledge on oxidative stress events in E. coli.
Keywords: enteric diseases hepatitis B virus infections human immunodeficiency virus infection malaria tuberculosis urinary tract infections a b s t r a c tBangladesh has experienced a variety of diseases caused by natural dissemination of an array of pathogenic microorganisms into the environment. While cures for these diseases largely depend on the medication strategies of physicians, determining the reasons for disease persistence as well for the onset of reinfection is also essential. Routine diagnosis of common diseases usually means treatment with a range of appropriate medicines; however, failure of these medications because of the drug resistance of microorganisms accompanied by a lack of alertness about the etiology of diseases often leads to fatal results. The present review reports on emerging diseases in Bangladesh and focuses on associated microbiological research into ongoing diseases including enteric, urinary tract, and malarial complications. The viruses associated with acquired immunodeficiency syndrome and hepatitis are also discussed.
BackgroundWith a preceding scrutiny of bacterial cellular responses against heat shock and oxidative stresses, current research further investigated such impact on yeast cell. Present study attempted to observe the influence of high temperature (44–46 °C) on the growth and budding pattern of Saccharomyces cerevisiae SUBSC01. Effect of elevated sugar concentrations as another stress stimulant was also observed. Cell growth was measured through the estimation of the optical density at 600 nm (OD600) and by the enumeration of colony forming units on the agar plates up to 450 min.ResultsSubsequent transformation in the yeast morphology and the cellular arrangement were noticed. A delayed and lengthy lag phase was observed when yeast strain was grown at 30, 37, and 40 °C, while at 32.5 °C, optimal growth pattern was noticed. Cells were found to lose culturability completely at 46 °C whereby cells without the cytoplasmic contents were also observed under the light microscope. Thus the critical growth temperature was recorded as 45 °C which was the highest temperature at which S. cerevisiae SUBSC01 could grow. However, a complete growth retardation was observed at 45 °C with the high concentrations of dextrose (0.36 g/l) and sucrose (0.18 g/l). Notably, yeast budding was found at 44 and 45 °C up to 270 min of incubation, which was further noticed to be suppressed at 46 °C.ConclusionsPresent study revealed that the optimal and the critical growth temperatures of S. cerevisiae SUBSC01 were 32.5 and 45 °C, respectively; and also projected on the inhibitory concentrations of sugars on yeast growth at that temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.