Using nonresonant second harmonic generation spectroscopy, we have monitored the change in surface charge density of the silica/water interface over a broad pH range in the presence of different alkali chlorides. Planar silica is known to possess two types of surface sites with pKa values of ∼4 and ∼9, which are attributed to different solvation environments of the silanols. We report that varying the alkali chloride electrolyte significantly changes the effective acid dissociation constant (pKa(eff)) for the less acidic silanol groups, with the silica/NaClaq and silica/CsClaq interfaces exhibiting the lowest and highest pKa(eff) values of 8.3(1) and 10.8(1), respectively. Additionally, the relative populations of the two silanol groups are also very sensitive to the electrolyte identity. The greatest percentage of acidic silanol groups was 60(2)% for the silica/LiClaq interface in contrast to the lowest value of 20(2)% for the silica/NaClaq interface. We attribute these changes in the bimodal behavior to the influence of alkali ions on the interfacial water structure and its corresponding effect on surface acidity.
Vibrational sum frequency generation (SFG) spectroscopy was utilized to distinguish different populations of water molecules within the electric double layer (EDL) at the silica/water interface. By systematically varying the electrolyte concentration, surface deprotonation, and SFG polarization combinations, we provide evidence of two regions of water molecules that have distinct pH-dependent behavior when the Stern layer is present (with onset between 10 and 100 mM NaCl). For example, water molecules near the surface in the Stern layer can be probed by the pss polarization combination, while other polarization combinations (ssp and ppp) predominantly probe water molecules further from the surface in the diffuse part of the electrical double layer. For the water molecules adjacent to the surface within the Stern layer, upon increasing the pH from the point-of-zero charge of silica (pH ∼2) to higher values (pH ∼12), we observe an increase in alignment consistent with a more negative surface with increasing pH. In contrast, water molecules further from the surface appear to exhibit a net flip in orientation upon increasing the pH over the same range, which we attribute to the presence of the Stern layer and possible overcharging of the EDL at lower pH. The opposing pH-dependent behavior of water in these two regions sheds new light on our understanding of the water structure within the EDL at high salt concentrations when the Stern layer is present.
Specific ion effects (SIEs) are known to influence the acid/base behavior of silica and the interfacial structure of water, yet evidence of the effect of pH on SIEs is lacking. Here broadband vibrational sum frequency generation (SFG) spectroscopy was used to study SIEs on the water structure at the electrical double layer (EDL) of silica as a function of pH and monovalent cation identity from pH 2-12 at 0.5 M salt concentration. SFG results indicate a direct Hofmeister series of cation adsorption at pH 8 (Li < Na < K < Cs), with an inversion in this series occurring at pH > 10. In addition, an inversion in SFG intensity trends also occurred at pH < 6, which was attributed to contributions from asymmetric cation hydration and EDL overcharging. The highly pH-dependent SIEs for silica/water have implications for EDL models that often assume pH-independent parameters.
Using second harmonic generation and sum frequency generation spectroscopy, we monitor the influence of sodium and potassium halides on acid–base processes at the negatively charged silica/aqueous electrolyte interface. We find that the two types of acidic silanols at the surface are very sensitive to the presence of halides in the aqueous phase. As the halide size increases, the pH at which half the more acidic sites are deprotonated (pH0.5) shifts to lower pH. Conversely, the pH0.5 of the less acidic sites shifts to higher pH with increasing halide size. We also observe titration curves of increasing sharpness as the halide size increases, indicative of positive cooperativity. Using a simple cooperative model, we find that the cooperative unit for the dissociation of more acidic surface sites is ∼1, 2, and 3 for the chloride, bromide, and iodide electrolytes, respectively, which reveals that the larger anions promote deprotonation among the more acidic silanol groups. We also find that the fraction of more acidic sites, proportional to the relative surface charge density at neutral pH, increases from 20% to 86% as the sodium halide is varied from chloride to iodide. As the percentage of more acidic sites and the surface charge at neutral pH increases, the effective acidity of the less acidic sites decreases, indicating that greater surface charge density renders the remaining silanol groups more difficult to deprotonate. As the relative amount of less acidic sites increases, their deprotonation events exhibit negative, rather than positive, cooperativity revealing charge repulsion between neighboring silanol groups.
Second harmonic generation spectroscopy is a useful tool for monitoring changes in interfacial potential at buried insulator/liquid interfaces. Here we apply this technique to the silica/aqueous interface and monitor the changes in interfacial potential while varying the pH in the presence of different alkali halides at 0.1M concentration. Within the pH range explored, the bimodal distribution of acidic sites on planar silica is clearly observed, corresponding to two types of acidic SiOH groups. Comparing these data with previous work at 0.5M sheds light on whether the presence of the ions stabilizes the charged or neutral state of the surface sites. For the alkali chlorides, with the exception of NaCl, we observe that the presence of the alkali chlorides stabilize the less acidic site in the protonated (SiOH) rather than deprotonated (SiO(-)) form. This unusual influence of the cation is attributed to the combination of interactions at the interface between water, surface sites and the electrolyte. Overall, we observe that the influence of the alkali ion on the ratio of the two types of sites and their effective acid dissociation constants is minor at 0.1M, unlike that observed at 0.5M. In contrast, the influence of the anion on the cooperative dissociation of surface sites and their relative distribution is little affected upon decreasing the concentration, which indicates that these specific anion effects are prevalent in nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.