Fish scales inspired materials platform can provide advanced mechanical properties and functionalities. These materials, inspired from fish scales take the form of either composite materials or multi-material discrete exoskeleton type structures. Over the last decade, they have been under intense scrutiny for generating tailorable and tunable stiffness, penetration and fracture resistance, buckling prevention, nonlinear damping, hydrodynamic and camouflaging functions. Such programmable behavior emerges from leveraging their unique morphology and structure-property relationships. Several advanced tools of characterization, manufacturing, modeling and computation have been employed to understand and discover their behavior. With the rapid proliferation of additive manufacturing (AM) techniques, and advancing envelope of modeling and computational methods, this field is seeing renewed efforts to realize even more ambitious designs. We present a review and recapitulation of the state-of-the art in fish scale inspired materials in this paper.
The applications for metal additive manufacturing (AM) are expanding. Powder-bed, powder-fed, and wire-fed AM are the different kinds of AM technologies based on the feeding material. Wire-Arc AM (WAAM) is a wire-fed technique that has the potential to fabricate large-scale three-dimensional objects. In WAAM, a metallic wire is continuously fed to the deposition location and is melted by an arc-welding power source. As the applications for WAAM expands, the quality assurance of the parts becomes a major concern. Nondestructive testing (NDT) of AM parts is necessary for quality assurance and inspection of these materials. The conventional method of inspection is to perform testing on the finished parts. There are several limitations encountered when using conventional methods of NDT for as-built AM parts due to surface conditions and complex structure. In-situ process monitoring based on the ultrasound technology is proposed for WAAM material inspection during the manufacturing process. Ultrasonic inline monitoring techniques have the advantages of providing valuable information about the process and parts quality. Ultrasonic technique was used to detect the process condition deviations from the normal. A fixture developed by the authors holds an ultrasonic sensor under the build platform and aligned with the center of the base plate. Ultrasonic signals were measured for different process conditions by varying the current and gas flow rate. Features (indicators) from the radio frequency (RF) signal were used to evaluate the difference in signal clusters to identify and classify different build conditions. Results show that the indicator values of the ultrasonic signals in the region of interest (ROI) changes with different process conditions and can be used to classify them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.