In this paper, the minimal change in the area and the entropy of quantum-corrected Schwarzschild black hole immersed in the quintessence matter is investigated. Utilizing two different approaches, namely, the periodicity of the outgoing wave and the black hole adiabatic property, the area spectrum is derived, which is independent of both the length scale coming from quantum deformation of the Schwarzschild black hole, and the quintessential state parameter, and which is in agreement with the uniform area spacing originally found by Bekenstein.
Due to thermal radiation process, the temperature of the Schwarzschild black hole diverges at the time the black hole evaporates, while it is natural to expect a vanishing temperature, since the spacetime geometry becomes Minkowskian whose intrinsic temperature is identically zero. Recently, a nonsingular temperature has been proposed in this research line, which follows the Hawking temperature for the large black hole system, at the same time becomes null in the limiting case the black hole mass tends to zero. In this paper, the stability and the phase transition of the quantum-corrected Schwarzschild black hole are investigated based on this modified temperature. For that, the thermodynamic quantities like the local temperature, the heat capacity, and the off-shell free energy are calculated. The results show that the free energy of the black hole follows the characteristic swallow-tail behavior, implying the existence of an unstable intermediate black hole state quickly decaying into the stable small or large black hole.
Exploiting the adiabatic invariance existing in the literature for black hole horizon area, the area quanta of photon sphere for the Schwarzschild and the Reissner-Nordström black holes are investigated. While the derived spacing between two successive spectral levels for the non-charged case is exactly in consonance with Bekenstein, the spacing for the generic charged case is equal to the original Bekenstein spectrum on a slight approximation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.