Surface roughness is a quality index for machined surfaces. In this study an algorithm has been developed to determine the feasible solutions for cutting parameters in order to obtain desired surface roughness for three dimensional dies. Here the average surface roughness values for a commercial die material EN24 after ball end milling operation have been measured after experiments with different cutting parameters. These datasets have been used for training and testing different prediction models like artificial neural network (ANN), response surface methodology (RSM), adaptive neuro-fuzzy inference system (ANFIS) and mathematical equation based on machining theories. ANFIS model has been selected as better prediction model because it has shown minimum value of root mean square error (RMSE) and mean absolute percentage error (MAPE) for training and testing datasets. This ANFIS model has been used further for predicting surface roughness of a typical die made of EN24 after ball end milling operation.
In die manufacturing industries surface roughness is considered as a vital quality characteristic in order to retain the consumers' satisfaction. On the other hand, manufacturers want to minimize the machining time which eventually reduces their cost. This research deals with an optimization problem to minimize the machining time (T) for end milling operation on hot die steel (H13), subject to specified surface roughness (R a ) limits. Six machining parameters and corresponding T and R a were recorded from 74 independent experiments. After exhaustive search, three machining parameters (tool inclination angle, tool diameter and radial depth of cut) for R a and two machining parameters (feed rate and radial depth of cut) for T are found to be highly influential. In terms of these corresponding parameters, two ANFIS models are developed for the prediction of R a and T, respectively. These models are utilized to find the optimum values of machining parameters. Five advanced metaheuristic algorithms, Artificial Bee Colony (ABC), quick artificial bee colony, modified differential evolution, ant colony optimization for real numbers and simulated annealing, with or without local search, are applied for solving this optimization problem. Each of the algorithms is run for 30 times, allowing 100,000 number of function evaluations in each run. Statistical analysis (F-test, t-test) are done to evaluate the performance of the algorithms. Hybrid ABC with local search is proposed as the best algorithm for solving this problem based on average of minimum machining time obtained. The proposed optimization approach can be used for parameter selection in real time machining with artificially intelligent Computer Numerical Control (CNC) machine tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.