This study provides Heart Rate (HR) Estimation using wrist-type Photoplethysmogpraphy (PPG) sensor while the subject is running. We propose the algorithm to estimate heart rate for the wrist-type PPG sensor. Since body motion artifacts easily affect the arm portion, our method in this study also uses accelerometer built in the wrist-type sensor to improve the accuracy of heart rate estimation. Our method has two components. One is rejecting artifacts with the power spectrum's difference between PPG and acceleration obtained by frequency analysis. The other is the reliability of heart rate estimation, defined by the acceleration. Experimental results while our test subjects were running came closer to the holter Electrocardiogram (ECG) in high accuracy (r = 0.98, SD = 8.7 bpm). We, therefore, report the heart rate estimation method which has a higher degree of usability compared to existing methods using ECG.
This paper presents a novel method that uses eyelid closure and heart rate variability to estimate the driver's drowsiness level. Laboratory experiments were conducted by using a proprietary driving simulator, which induced drowsiness among the test drivers. The purposes of these experiments were to obtain the electrocardiogram (ECG) and the eye-blink video sequences. Also the drivers were monitored through a video camera. The changes in facial expression of the drivers were used as a standard index of drowsiness level. Error-Correcting Output Coding (ECOC) was employed as a multi-class classifier to estimate the drowsiness level. We extended the ordinary ECOC using a loss function for decoding procedure to obtain class tendencies of each drowsiness level. We used the Loss-based Decoding ECOC (LD-ECOC) to classify the drowsiness level. As a result, we obtained an extraordinarily high accuracy for estimation of drowsiness level.
Measuring blood pressure continuously helps monitor health and also prevent lifestyle related diseases to extend the expectancy of healthy life. Blood pressure, which is nowadays used for monitoring patient, is one of the most useful indexes for prevention of lifestyle related diseases such as hypertension. However, continuously monitoring the blood pressure is unrealistic because of discomfort caused by the tightening of a cuff belt. We have earlier researched the data-oriented blood pressure estimation without using a cuff. Remarkably, our blood pressure estimation method only uses a photoplethysmograph sensor. Therefore, the application is flexible for sensor locations and measuring situations. In this paper, we describe the implementation of our estimation method, the launch of a cloud system which can collect and manage blood pressure data measured by a wristwatch-type photoplethysmograph sensor, and the construction of our applications to visualize life-log data including the time-series data of blood pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.