The main intension of this paper is to extract new and further general analytical wave solutions to the (2 þ 1)dimensional fractional Ablowitz-Kaup-Newell-Segur (AKNS) equation in the sense of conformable derivative by implementing the advanced exp ðÀϕ ðξÞÞ-expansion method. This method is a particular invention of the generalized exp ðÀϕ ðξÞÞ-expansion method. By the virtue of the advanced exp ðÀϕ ðξÞÞ-expansion method, a series of kink, singular kink, soliton, combined soliton, and periodic wave solutions are constructed to our preferred space time-fractional (2 þ 1)-dimensional AKNS equation. An extensive class of new exact traveling wave solutions are transpired in terms of, hyperbolic, trigonometric, and rational functions. To express the underlying propagated features, some attained solutions are exhibited by making their three-dimensional (3D), twodimensional (2D) combined, and 2D line plot with the help of computational packages MATLAB. All plots are given to show the proper wave features through the founded solutions to the studied equation with particular preferring of the selected parameters. Moreover, it may conclude that the attained solutions and their physical features might be helpful to comprehend the water wave propagation in water wave mechanics.
We proposed a reconfigurable valley topological acoustic waveguide constructed using a 2D phononic crystal (PnC) with C3v symmetric arrangement of three rods in the unit cell. An interface between two types of PnCs with differently oriented unit cells exhibits high robustness of the valley transport of acoustic waves via the topologically protected state. Structural reconfiguration was introduced by the continuous translation of rod arrays in the PnCs. The topological phase transition in this translational change was quantitatively identified by the change in the Berry curvature. The translation of the rods leaves a dimer array at the interface, creating a localized/defective mode along the waveguide. Despite the presence of the localized mode, the acoustic wave can propagate along the reconfigurable waveguide the same as the original waveguide. The continuous translation of a rod array can be used to turn on and off the bandgap. This can be a new approach to design a robust acoustic device with a high reconfigurability.
Seasons are the divisions of the year into months or days according to the changes in weather, ecology and the intensity of sunlight in a given region. The temperature cycle plays a major role in defining the meteorological seasons of the year. This study aims at investigating seasonal boundaries applying harmonic analysis in daily temperature for the duration of 30 years, recorded at six stations from 1988 to 2017, in northwest part of Bangladesh. Year by year harmonic analyses of daily temperature data in each station have been carried out to observe temporal and spatial variations in seasonal lengths. Periodic nature of daily temperature has been investigated employing spectral analysis, and it has been found that the estimated periodicities have higher power densities of the frequencies at 0.0027 and 0.0053 cycles/day. Some other minor periodic natures have also been observed in the analyses. Using the frequencies between 0.0027 to 0.0278 cycles/day, the observed periodicities in spectral analysis, harmonic analyses of minimum and maximum temperatures have found four seasonal boundaries every year in each of the stations. The estimated seasonal boundaries for the region fall between 19-25 February, 19-23 May, 18-20 August and 17-22 November. Since seasonal variability results in imbalance in water, moisture and heat, it has the potential to significantly affect agricultural production. Hence, the seasons and seasonal lengths presented in this research may help the concerned authorities take measures to reduce the risks for crop productivity to face the challenges arise from changing climate. Moreover, the results obtained are likely to contribute in introducing local climate calendar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.