Solar panels used for electricity generation have got inverters as their core components. Such inverters are made from switching devices coupled with additional circuit component configured in a transformer-less topology in recent reported works. A transformer-less topology suffers from the drawbacks of lack of isolation leading to leakage current flow from various points of it down to ground. The leakage in inverters might be troublesome as it may lead to loss in power, and may cause malfunctioning of analog devices normally used in power inverters. In this work, we identify possible leakage currents in a given transformer-less topology using the circuit analysis principles. The conversion of so obtained leakage currents into a useful DC voltage is carried out in this work. This work focuses on converting leakage current into small DC voltage in the range of ~1.1004V using recently reported rectifier circuits, supplying a load of 200Ω in the mW range. Although small in magnitude, such voltage sources could be used for battery charging purposes or driving small loads.
<p>Solar panels used for electricity generation have got inverters as their core components. Such inverters are made from switching devices coupled with additional circuit component configured in a transformer-less topology in recent reported works. A transformer-less topology suffers from the drawbacks of lack of isolation leading to leakage current flow from various points of it down to ground. The leakage in inverters might be troublesome as it may lead to loss in power, and may cause malfunctioning of analog devices normally used in power inverters. In this work, we identify possible leakage currents in a given transformer-less topology using the circuit analysis principles. The conversion of so obtained leakage currents into a useful DC voltage is carried out in this work. This work focuses on converting leakage current into small DC voltage in the range of ~1.1004V using recently reported rectifier circuits, supplying a load of 200Ω in the mW range. Although small in magnitude, such voltage sources could be used for battery charging purposes or driving small loads.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.