Over the last years, we have witnessed a rapid deployment of real-time applications on the Internet as well as many research works about Quality of Service (QoS), in particular IPv4 (Internet Protocol version 4). The inevitable exhaustion of the remaining IPv4 address pool has become progressively evident. As the evolution of Internet Protocol (IP) continues, the deployment of IPv6 QoS is underway. Today, there is limited experience in the deployment of QoS for IPv6 traffic in MPLS backbone networks in conjunction with DiffServ (Differentiated Services) support. DiffServ itself does not have the ability to control the traffic which has been taken for end-to-end path while a number of links of the path are congested. In contrast, MPLS Traffic Engineering (TE) is accomplished to control the traffic and can set up end-to-end routing path before data has been forwarded. From the evolution of IPv4 QoS solutions, we know that the integration of DiffServ and MPLS TE satisfies the guaranteed QoS requirement for realtime applications. This paper presents a QoS performance study of real-time applications such as voice and video conferencing in terms of Packet Delay Variation (PDV) over DiffServ with or without MPLS TE in IPv4/IPv6 networks using Optimized Network Engineering Tool (OPNET
KEYWORDS DiffServ, MPLS TE, IPv6, PDV and OPNET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.