Study on deep neural networks and big data is merging now by several aspects to enhance the capabilities of intrusion detection system (IDS). Many IDS models has been introduced to provide security over big data. This study focuses on the intrusion detection in computer networks using big datasets. The advent of big data has agitated the comprehensive assistance in cyber security by forwarding a brunch of affluent algorithms to classify and analysis patterns and making a better prediction more efficiently. In this study, to detect intrusion a detection model has been propounded applying deep neural networks. We applied the suggested model on the latest data set available at online, formatted with packet based, flow based data and some additional metadata. The data set is labeled and imbalanced with 79 attributes and some classes having much less training samples compared to other classes. The proposed model is build using Keras and Google Tensorflow deep learning environment. Experimental result shows that intrusions are detected with the accuracy over 99% for both binary and multi-class classification with selected best features. Receiver operating characteristics (ROC) and precision-recall curve average score is also 1. The outcome implies that Deep Neural Networks offers a novel research model with great accuracy for intrusion detection model, better than some models presented in the literature.
Coronavirus disease 2019 (COVID-19) has made a huge pandemic situation in many countries of the world including Bangladesh. If the increase rate of this threat can be forecasted, immediate measures can be taken. This study is an effort to forecast the threat of present pandemic situation using machine learning (ML) forecasting models. Forecasting was done in three categories in the next 30 days range. In our study, multiple linear regression performed best among the other algorithms in all categories with R2 score of 99% for first two categories and 94% for the third category. Ridge regression performed great for the first two categories with R2 scores of 99% each but performed poorly for the third category with R2 score of 43%. Lasso regression performed reasonably well with R2 scores of 97%, 99% and 75% for the three categories. We also used Facebook Prophet to predict 30 days beyond our train data which gave us healthy R2 scores of 92% and 83% for the first two categories but performed poorly for the third category with R2 score of 34%. Also, all the models’ performances were evaluated with a 40-day prediction interval in which multiple linear regression outperformed other algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.