Erythrocyte sickling on deoxygenation in vitro occurs in transgenic SAD mice, hemizygous for a modified human sickle hemoglobin, HbSAD [alpha 2 beta 2S(beta 6val)Antilles (beta 23 lle)D- Punjab (beta 121Gln)] (SAD- 1, 19% HbSAD; beta-thal/SAD-1, 26% HbSAD). The present study examines the cellular defects in vivo and pathologic changes observed in SAD-1 mice at atmospheric oxygenation as well as the effect of acute hypoxia. The transgenic mice showed generalized congestion and microvascular occlusions, occasionally with thrombosis and infarctions of lung, kidneys, penis, and myocardium. The most prevalent chronic organ lesions were congestive splenomegaly (83% of animals) and renal glomerulopathy, which affected 75% of animals by 10 months of age. Further, SAD mice have a mean lifespan that was reduced by 40% when compared with nontransgenic littermates. Premature death of SAD mice was associated with acute vasoocclusive events or severe renal disease. SAD mice developed lethal vasoocclusive processes when exposed to reduced pO2 conditions, whereas control mice survived normally. The sensitivity to hypoxia appears to depend on the cellular level of HbSAD, because death occurred at pO2 of 42 mmHg for SAD mice and 49 mmHg for beta-thal/SAD. Administration of an antisickling agent that increases oxygen affinity (BW12C79) protected SAD and beta-thal/SAD mice from the lethal hypoxic stress. In conclusion, the transgenic SAD and beta-thal/SAD mice developed a pathophysiology that strongly resembles human sickle cell disease. Moreover, this animal model allows studies on the effect of antisickling agents.
Sickle cell disease is a hereditary disorder characterized by erythrocyte deformity due to hemoglobin polymerization. We assessed in vivo the potential curative threshold of fetal hemoglobin in the SAD transgenic mouse model of sickle cell disease using mating with mice expressing the human fetal Agamma-globin gene. With increasing levels of HbF, AgammaSAD mice showed considerable improvement in all hematologic parameters, morphopathologic features and life span/survival. We established the direct therapeutic effect of fetal hemoglobin on sickle cell disease and demonstrated correction by increasing fetal hemoglobin to about 9-16% in this mouse model. This in vivo study emphasizes the potential of the SAD mouse models for quantitative analysis of gene therapy approaches.
Erythrocyte sickling on deoxygenation in vitro occurs in transgenic SAD mice, hemizygous for a modified human sickle hemoglobin, HbSAD [alpha 2 beta 2S(beta 6val)Antilles (beta 23 lle)D- Punjab (beta 121Gln)] (SAD- 1, 19% HbSAD; beta-thal/SAD-1, 26% HbSAD). The present study examines the cellular defects in vivo and pathologic changes observed in SAD-1 mice at atmospheric oxygenation as well as the effect of acute hypoxia. The transgenic mice showed generalized congestion and microvascular occlusions, occasionally with thrombosis and infarctions of lung, kidneys, penis, and myocardium. The most prevalent chronic organ lesions were congestive splenomegaly (83% of animals) and renal glomerulopathy, which affected 75% of animals by 10 months of age. Further, SAD mice have a mean lifespan that was reduced by 40% when compared with nontransgenic littermates. Premature death of SAD mice was associated with acute vasoocclusive events or severe renal disease. SAD mice developed lethal vasoocclusive processes when exposed to reduced pO2 conditions, whereas control mice survived normally. The sensitivity to hypoxia appears to depend on the cellular level of HbSAD, because death occurred at pO2 of 42 mmHg for SAD mice and 49 mmHg for beta-thal/SAD. Administration of an antisickling agent that increases oxygen affinity (BW12C79) protected SAD and beta-thal/SAD mice from the lethal hypoxic stress. In conclusion, the transgenic SAD and beta-thal/SAD mice developed a pathophysiology that strongly resembles human sickle cell disease. Moreover, this animal model allows studies on the effect of antisickling agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.