This paper describes a shortened and improved version of the Speech in Noise (SIN) Test (Etymotic Research, 1993). In the first two of four experiments, the level of a female talker relative to that of four-talker babble was adjusted sentence by sentence to produce 50% correct scores for normal-hearing subjects. In the second two experiments, those sentences-in-babble that produced either lack of equivalence or high across-subject variability in scores were discarded. These experiments produced 12 equivalent lists, each containing six sentences, with one sentence at each adjusted signal-to-noise ratio of 25, 20, 15, 10, 5, and 0 dB. Six additional lists were also made equivalent when the scores of particular pairs were averaged. The final lists comprise the "QuickSIN" test that measures the SNR a listener requires to understand 50% of key words in sentences in a background of babble. The standard deviation of single-list scores is 1.4 dB SNR for hearing-impaired subjects, based on test-retest data. A single QuickSIN list takes approximately one minute to administer and provides an estimate of SNR loss accurate to +/-2.7 dB at the 95% confidence level.
To assess the risk of noise-induced hearing loss among musicians in the Chicago Symphony Orchestra, personal dosimeters set to the 3-dB exchange rate were used to obtain 68 noise exposure measurements during rehearsals and concerts. The musicians' Leq values ranged from 79-99 dB A-weighted sound pressure level [dB(A)], with a mean of 89.9 dB(A). Based on 15 h of on-the-job exposure per week, the corresponding 8-h daily Leq (excluding off-the-job practice and playing) ranged from 75-95 dB(A) with a mean of 85.5 dB(A). Mean hearing threshold levels (HTLs) for 59 musicians were better than those for an unscreened nonindustral noise-exposed population (NINEP), and only slightly worse than the 0.50 fractile data for the ISO 7029 (1984) screened presbycusis population. However, 52.5% of individual musicians showed notched audiograms consistent with noise-induced hearing damage. Violinists and violists showed significantly poorer thresholds at 3-6 kHz in the left ear than in the right ear, consistent with the left ear's greater exposure from their instruments. After HTLs were corrected for age and sex, HTLs were found to be significantly better for both ears of musicians playing bass, cello, harp, or piano and for the right ears of violinists and violists than for their left ears or for both ears of other musicians. For 32 musicians for whom both HTLs and Leq were obtained, HTLs at 3-6 kHz were found to be correlated with the Leq measured.
The purpose of this study was to assess the accuracy of clinical and laboratory measures of directional microphone benefit. Three methods of simulating a noisy restaurant listening situation ([1] a multimicrophone/multiloudspeaker simulation, the R-SPACE, [2] a single noise source behind the listener, and [3] a single noise source above the listener) were evaluated and compared to the "live" condition. Performance with three directional microphone systems differing in polar pattern (omnidirectional, supercardioid, and hypercardioid array) and directivity indices (0.34, 4.20, and 7.71) was assessed using a modified version of the Hearing in Noise Test (HINT). The evaluation revealed that the three microphones could be ordered with regard to the benefit obtained using any of the simulation techniques. However, the absolute performance obtained with each microphone type differed among simulations. Only the R-SPACE simulation yielded accurate estimates of the absolute performance of all three microphones in the live condition. Performance in the R-SPACE condition was not significantly different from performance in the "live restaurant" condition. Neither of the single noise source simulations provided accurate predictions of real-world (live) performance for all three microphones.
Eardrum pressures at hearing threshold have been calculated from both earphone data (ISO R389-1964 and ANSI S3.6-1969) and free-field data (ISO R226-1961). When head diffraction, external-ear resonance, and an apparent flaw in ISO R226 are accounted for in the free-field data, and real-ear versus coupler differences and physiological noise are accounted for in the earphone data, the agreement between the two derivations is good. At the audiometric frequencies of 125, 250, 500, 1000, 2000, 4000, and 8000 Hz, the estimated eardrum pressures at absolute threshold are 30, 19, 12, 9, 15, 13, and 14 dB SPL, respectively. Except for the effects of physiological noise at low frequencies, no evidence of the "missing 6 dB" is seen, an observation consistent with the experimental results of several recent studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.