The solid solution between the normal ferroelectricPb(Zr1/2Ti1/2)O3(PZT) and relaxor ferroelectricPb(Ni1/3Nb2/3)O3 (PNN) was synthesized by the columbite method. The phase structure and dielectric properties of xPZT-(1−x)PNN where x=0.4-0.9and the Zr/Ti composition was fixed close to the morphotropic phase boundary (MPB) were investigated. With these data, the ferroelectric phase diagram between PZT and PNN has been established. The relaxor ferroelectric nature of PNN gradually transformed towards a normal ferroelectric state towards the composition 0.7PZT-0.3PNN, in which the permittivity was characterized by a sharp peak and the disappearance of dispersive behavior. X-ray diffraction analysis demonstrated the coexistence of both the rhombohedral and tetragonal phases at the composition 0.8PZT-0.2PNN, a new morphotropic phase boundary within this system. Examination of the dielectric spectra indicates that PZT-PNN exhibits an extremely high relative permittivity near the MPB composition. The permittivity shows a shoulder at the rhombohedral to tetragonal phase transition temperature TRT=195°C, and then a maximum permittivity (36 000 at 10kHz) at the transition temperature Tmax=277°C at the MPB composition. The maximum transition temperature of this system was 326°C at the composition x=0.9 with the relative permittivity of 32 000 at 10kHz.
Ceramics in the xPb(Zn 1/3 Nb 2/3 )O 3 −(1 − x)Pb(Zr 0.5 Ti 0.5 )O 3 [xPZN-(1 − x)PZT] solid solution system are expected to display excellent dielectric, piezoelectric, and ferroelectric properties in compositions close to the morphotropic phase boundary (MPB). The dielectric behavior of ceramics with x = 0.1−0.6 has been characterized in order to identify the MPB compositions in this system. Combined with X-ray diffraction results, ferroelectric hysteresis measurements, and Raman reflectivity analysis, it was consistently shown that an MPB exists between x = 0.2 and x = 0.3 in this binary system. When x ≤ 0.2, the tetragonal phase dominates at ambient temperatures. In the range of x ≥ 0.3, the rhombohedral phase dominates. For this rhombohedral phase, electrical measurements reveal a profound frequency dispersion in the dielectric response when x ≥ 0.6, suggesting a transition from normal ferroelectric to relaxor ferroelectric between 0.5 ≤ x ≤ 0.6. Excellent piezoelectric properties were found in 0.3PZN-0.7PZT, the composition closest to the MPB with a rhombohedral structure. The results are summarized in a PZN-PZT binary phase diagram. N. Vittayakorn ( )
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.