Key goal and targets of the Ethiopia National Malaria Control Program are to achieve malaria elimination within specific geographical areas with historically low malaria transmission and to reach near-zero malaria transmission in the remaining malarious areas by 2020. However, back and forth population movement between high-transmission and low-transmission area imposes challenge on the success of national malaria control programs. Therefore, examining the effect of human movement and identification of at-risk populations is crucial in an elimination setting. A matched case-control study was conducted among 520 study participants at a community level in low malaria transmission settings in northern Ethiopia. Study participants who received a malaria test were interviewed regarding their recent travel history. Bivariate and multivariate analyses were carried out to determine if the reported travel was related to malaria infection. Younger age (adjusted odds ratio [AOR] = 3.20, 95% confidence interval [CI]: 1.73, 5.89) and travel in the previous month (AOR = 11.40, 95% CI: 6.91, 18.82) were statistically significant risk factors for malaria infection. Other statistically significant factors, including lower educational level (AOR = 2.21, 95% CI: 1.26, 3.86) and nonagricultural in occupation (AOR = 2.0, 95% CI: 1.02, 3.94), were also found as risk factors for malaria infection. Generally, travel history was found to be a strong predictor for malaria acquisition in the high-altitude villages. Therefore, besides the existing efforts in endemic areas, targeting those who frequently travel to malarious areas is crucial to reduce malaria infection risks and possibility of local transmissions in high-altitude areas of northern Ethiopia.
Background: Ethiopia has set a goal for malaria elimination by 2030. Low parasite density infections may go undetected by conventional diagnostic methods (microscopy and rapid diagnostic tests) and their contribution to malaria transmission varies by transmission settings. This study quantified the burden of subpatent infections from samples collected from three regions of northwest Ethiopia.Methods: Sub-samples of dried blood spots from the Ethiopian Malaria Indicator Survey 2015 (EMIS-2015) were tested and compared using microscopy, rapid diagnostic tests (RDTs), and nested polymerase chain reaction (nPCR) to determine the prevalence of subpatent infection. Paired seroprevalence results previously reported along with gender, age, and elevation of residence were explored as risk factors for Plasmodium infection. Results:Of the 2608 samples collected, the highest positive rate for Plasmodium infection was found with nPCR 3.3% (95% CI 2.7-4.1) compared with RDT 2.8% (95% CI 2.2-3.5) and microscopy 1.2% (95% CI 0.8-1.7). Of the nPCR positive cases, Plasmodium falciparum accounted for 3.1% (95% CI 2.5-3.8), Plasmodium vivax 0.4% (95% CI 0.2-0.7), mixed P. falciparum and P. vivax 0.1% (95% CI 0.0-0.4), and mixed P. falciparum and Plasmodium malariae 0.1% (95% CI 0.0-0.3). nPCR detected an additional 30 samples that had not been detected by conventional methods. The majority of the nPCR positive cases (61% (53/87)) were from the Benishangul-Gumuz Region. Malaria seropositivity had significant association with nPCR positivity [adjusted OR 10.0 (95% CI 3.2-29.4), P < 0.001]. Conclusion:Using nPCR the detection rate of malaria parasites increased by nearly threefold over rates based on microscopy in samples collected during a national cross-sectional survey in 2015 in Ethiopia. Such subpatent infections might contribute to malaria transmission. In addition to strengthening routine surveillance systems, malaria programmes may need to consider low-density, subpatent infections in order to accelerate malaria elimination efforts.
Background In Ethiopia, despite improvements in coverage and access, utilization of long-lasting insecticidal nets (LLINs) remains a challenge. Different household-level factors have been identified as associated with LLIN use. However, the contribution of LLIN physical integrity to their utilization is not well investigated and documented. This study aimed to assess the association between the physical integrity of LLINs and their use. Methods This study employed a nested case-control design using secondary data from the Ethiopian LLIN durability monitoring study conducted from May 2015 to June 2018. LLINs not used the night before the survey were identified as cases, while those used the previous night were categorized as controls. The physical integrity of LLINs was classified as no holes, good, acceptable, and torn using the proportionate hole index (pHI). A Generalized Estimating Equation (GEE) model was used to assess and quantify the association between LLIN physical integrity and use. The model specifications included binomial probabilistic distribution, logit link, exchangeable correlation matrix structure, and robust standard errors. The factors included in the model were selected first by fitting binary regression, and then by including all factors that showed statistical significance at P-value less than 0.25 and conceptually relevant variables into the multivariate regression model. Results A total of 5277 observations fulfilled the inclusion criteria. Out of these 1767 observations were cases while the remaining 3510 were controls. LLINs that were in torn physical condition had higher odds (AOR [95% CI] = 1.76 [1.41, 2.19]) of not being used compared to LLINs with no holes. Other factors that showed significant association included the age of the LLIN, sleeping place type, washing status of LLINs, perceptions towards net care and repair, LLIN to people ratio, economic status, and study site. Conclusion and recommendation LLINs that have some level of physical damage have a relatively higher likelihood of not being used. Community members need to be educated about proper care and prevention of LLIN damage to delay the development of holes as long as possible and use available LLINs regularly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.