Prediction of pore pressure change is an effective tool to properly monitor changes of groundwater flow caused by any construction work in fractured rock mass. Due to the complexity of hydrogeologic conditions in fractured rock and the scale of interest of the study domain, prediction of pore pressure changes by numerical models has not been precise enough to meet monitoring requirements. Considering these problems, a Grey model that combines the finite element method (FEM) and the artificial neural network (ANN) was developed for more precise prediction of pore pressure changes. In this model, several patterns of pore pressure changes were calculated by FEM for a simplified hydrogeologic conceptual model at a scale smaller than a representative elementary volume. The ANN model was then constructed to predict the actual pore pressure change using these FEM results as inputs. This modeling approach was adopted to predict the pore pressure changes caused by the construction of shafts of Mizunami Underground Research Laboratory (MIU), Japan. From the results obtained for MIU, it can be concluded that the proposed Grey model is a powerful tool for monitoring of pore pressure changes.
In designing a canal system, a major problem is to decide what conveyance parameter to apply in the calculations. Since basic knowledge on this subject is lacking, it is usually taken from literatures. Most of the irrigation projects in Ethiopia are found to work below their expectation. One of the main reasons is the conveyance parameters variation from the expected (design) value which ultimately affects the envisioned conveyance efficiency. To evaluate this variation, Fentale irrigation scheme was used as case study. The conveyance efficiency used at the design stage was 80%, which was within Food and Agricultural Organization of the united nations recommendations; while the field survey value was 17%. Such huge variation was due to the fact that the assigned conveyance parameter values (roughness coefficient, hydraulic radius and bed slope) no longer represent the current situation of the scheme. Such variation has resulted in increase in the depth and top width of the water surface which further resulted in 13% and 3% increase in wetted perimeter and top width of the canal, respectively. Thus this study suggests that conveyance parameters shall be derived from history of existing irrigation schemes in a country, rather than adopting it from standard literatures. As such construction quality, maintenance activities and technological transfer activities in a country shall be seen in deciding the conveyance parameters. The study also suggests that the ever increasing water shortage in an irrigation project could be managed by proper maintenance of the entire irrigation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.