Pliable, safe, and inexpensive energy storage devices are in demand to power modern flexible electronics. In this work, a foldable battery based on a solid‐state and rechargeable Zn‐air battery is introduced. The air cathode is prepared by coating graphene flakes on pretreated carbon cloth to form a dense, interconnected, and conducting carbon network. Manganese oxide hierarchical nanostructures are subsequently grown on the large surface area carbon network, leading to high loading of active catalyst per unit volume while maintaining the mechanical and electrical integrity of the air cathode. Solid‐state and rechargeable Zn‐air battery with such air cathode exhibits similar polarization curve and resistance at its flat and folded states. The folded battery is able to deliver a power density as high as ≈32 mW cm−2 and good cycling stability of up to 110 cycles. In addition, the flat battery shows similar discharge/charge curve and stable cycling performance after 100 times of repeated folding and unfolding, indicating its high mechanical robustness.
Nb-doped and pure TiO2 (anatase) nanoparticles were synthesized via a continuous hydrothermal flow synthesis reactor and investigated as electrode material for lithium-ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.