Nanowires are arguably the most studied nanomaterial model to make functional devices and arrays. Although there is remarkable maturity in the chemical synthesis of complex nanowire structures, their integration and interfacing to macro systems with high yields and repeatability still require elaborate aligning, positioning and interfacing and post-synthesis techniques. Top-down fabrication methods for nanowire production, such as lithography and electrospinning, have not enjoyed comparable growth. Here we report a new thermal size-reduction process to produce well-ordered, globally oriented, indefinitely long nanowire and nanotube arrays with different materials. The new technique involves iterative co-drawing of hermetically sealed multimaterials in compatible polymer matrices similar to fibre drawing. Globally oriented, endlessly parallel, axially and radially uniform semiconducting and piezoelectric nanowire and nanotube arrays hundreds of metres long, with nanowire diameters less than 15 nm, are obtained. The resulting nanostructures are sealed inside a flexible substrate, facilitating the handling of and electrical contacting to the nanowires. Inexpensive, high-throughput, multimaterial nanowire arrays pave the way for applications including nanowire-based large-area flexible sensor platforms, phase-changememory, nanostructure-enhanced photovoltaics, semiconductor nanophotonics, dielectric metamaterials,linear and nonlinear photonics and nanowire-enabled high-performance composites.
Cataloged from PDF version of article.A digital photonic nose concept based on infrared absorption inside a hollow core infrared-transmitting fi ber array is presented. Wavelength- scalable photonic bandgap fi bers fi lter specifi c energy photons from a blackbody source, where volatile compounds selectively absorb photons depending on their chemical absorption spectrum. The pattern resulting in the detector array is processed as a binary signature
We demonstrated two complementary size-dependent structural coloring mechanisms, interference and scattering, in indefinitely long coreÀshell nanowire arrays. The unusual nanostructures are comprised of an amorphous semiconducting core and a polymer shell layer with disparate refractive indices but with similar thermomechanical properties. CoreÀshell nanowires are mass produced from a macroscopic semiconductor rod by using a new top-to-bottom fabrication approach based on thermal size reduction. Nanostructures with diameters from 30 to 200 nm result in coloration that spans the whole visible spectrum via resonant Mie scattering. Nanoshell coloration based on thin film interference is proposed as a structural coloration mechanism which becomes dominant for nanowires having 700À1200 nm diameter. Controlled color generation in any part of visible and infrared spectral regions can be achieved by the simple scaling down procedure. Spectral color generation in mass-produced uniform coreÀshell nanowire arrays paves the way for applications such as spectral authentication at nanoscale, light-scattering ingredients in paints and cosmetics, large-area devices, and infrared shielding.
We report the preparation and characterization of nanoporous organically modified silica (ormosil) thin films at room temperature and neutral pH conditions from homogeneous methyl silsesquioxane (MSQ) gels. Universally applicable and stable colloidal ormosil suspensions are prepared from the gels by sonication and coated to the substrates including glass, paper and plastics. The nanoporosity and thickness of the films can be tuned, which makes them suitable for certain applications including sensing, functional coatings, and low-dielectric materials. We demonstrate the antireflection property of the films on glass, cellulose acetate (CA) and polyetherimide (PEI) substrates. The films on CA and PEI retain their antireflection property after multiple bending cycles. Furthermore, films are intrinsically hydrophobic, over a wide pH range, with static contact angles up to 143 on paper and 123 on glass and CA. Producing nanoporous ormosil thin films on flexible substrates may expand their use in low cost electronic, optical devices and sensors, and lab-on-paper applications.
Integration of nanowires into functional devices with high yields and good reliability turned out to be a lot more challenging and proved to be a critical issue obstructing the wide application of nanowire-based devices and exploitation of their technical promises. Here we demonstrate a relatively easy macrofabrication of a nanowire-based imaging circuitry using a recently developed nanofabrication technique. Extremely long and polymer encapsulated semiconducting nanowire arrays, mass-produced using the iterative thermal drawing, facilitate the integration process; we manually aligned the fibers containing selenium nanowires over a lithographically defined circuitry. Controlled etching of the encapsulating polymer revealed a monolayer of nanowires aligned over an area of 1 cm 2 containing a 10 × 10 pixel array. Each light-sensitive pixel is formed by the contacting hundreds of parallel photoconductive nanowires between two electrodes. Using the pixel array, alphabetic characters were identified by the circuitry to demonstrate its imaging capacity. This new approach makes it possible to devise extremely large nanowire devices on planar, flexible, or curved substrates with diverse functionalities such as thermal sensors, phase change memory, and artificial skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.