In this paper we describe a design and modeling methodology of synchronous generation system for renewable energy. Our choice fell on a synchronous generator structure with permanent magnet and axial flux simple to manufacturing to reduce the production cost of the energy generation system. The modeling approach presented leads to a scientific results of high level and opens the line of research to the study of the optimization of the energy recovered by the energy accumulator.
The recognition of human activities is usually considered to be a simple procedure. Problems occur in complex scenes involving high speeds. Activity prediction using Artificial Intelligence (AI) by numerical analysis has attracted the attention of several researchers. Human activities are an important challenge in various fields. There are many great applications in this area, including smart homes, assistive robotics, human–computer interactions, and improvements in protection in several areas such as security, transport, education, and medicine through the control of falling or aiding in medication consumption for elderly people. The advanced enhancement and success of deep learning techniques in various computer vision applications encourage the use of these methods in video processing. The human presentation is an important challenge in the analysis of human behavior through activity. A person in a video sequence can be described by their motion, skeleton, and/or spatial characteristics. In this paper, we present a novel approach to human activity recognition from videos using the Recurrent Neural Network (RNN) for activity classification and the Convolutional Neural Network (CNN) with a new structure of the human skeleton to carry out feature presentation. The aims of this work are to improve the human presentation through the collection of different features and the exploitation of the new RNN structure for activities. The performance of the proposed approach is evaluated by the RGB-D sensor dataset CAD-60. The experimental results show the performance of the proposed approach through the average error rate obtained (4.5%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.