The study of the parameters influencing the absorption of atmospheric humidity not condensed by plants with aerial roots is a challenge in the current context of climatic disturbance where methods of adapting plants to water stress have become the concern of many scientific researchers. Based on Poiseuille and Fick laws, leaf water potential depending on solar radiation and atmospheric water potential around aerial roots; the influence of temperature, relative humidity, inclination angle of roots and solar radiation wavelength on the radial and axial water flow through a root segment is simulated. The various simulations show that a low temperature of the air surrounding the root favors a significant entry of water into the root as well as a relative humidity of the high air approaching 100%. The angle of inclination has an influence on the quantity of water entering the root and that rising in the xylem. These different streams of water are optimized for root tilting of 60˚. The wavelength of the red radiation received by the leaves favors more entry and rise of water in the root. Future studies for transgenes should be taken into account the influence of all these parameters.
Abstract:The mobilization of water by the plant is one of the main challenges of the moment given the threats of food insecurity whose main cause is climate change. The atmosphere contains moisture at any time of the year in the arid or semiarid zone. Apart from the underground roots naturally possessed by many plants, there are plants which possess exclusively or not aerial roots. In the search for methods of adapting crops to water stress, it is imperative to deepen knowledge about interaction between atmospheric humidity and the aerial roots of plants with respect to water absorption. Assuming transfer coefficients of the aerial roots homogeneous and taking into account the variability of the water potential of atmospheric humidity, simulations showed that relative air humidity, root size, and radial and axial transfer coefficients strongly influence radial and axial flows and therefore the amount of water absorbed by the roots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.